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Abstract. Graphene, a monolayer of carbon atoms packed in a hexagonal structure, has become
one of the most remarkable materials available to condensed matter physics and material
science(engineering) today due to its nobel structural and electronic properties. In this paper, the
structural, electronic, and magnetic properties of Mn-doped monolayer pristine graphene is studied
using spin-polarized density functional theory (DFT). The results show that the substitution of Mn
dopant atom at the C sites is energetically favorable and the dopants are strongly hybridized with
neighboring C-atoms of graphene. The total density of state (TDOS), partial density of state (PDOS),
and energy band structure calculations results revel that the electronic and magnetic properties of
pristine graphene is being affected in the presence of Mn dopants. Thus, in the presence of Mn dopants
nonmagnetic(paramagnetic) and metallic state of pristine graphene is turned to half-metallic with
the ferromagnetic ground state. Based on result, we recommend that Mn doped graphene is Nobel
material for spintronics and magnetic information storage applications.
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1. Introduction
Graphene is a rapidly rising star on the horizon of materials science and condensed matter
physics due to its remarkable properties, such as high thermal conductivity [1], electrical
conductivity [2], extremely high tensile strength associated with strength of long carbon
bonds [3]. All of aforementioned properties which giving it the potential for replacing commercial
fillers currently in use for the fabrication of polymer composites and coatings. The carbon atoms
of graphene are packed in the hexagonal pattern, often referred to as the honeycomb pattern [4].
There are two atoms (C) per unit cell. Each atom in the unit cell of the graphene layer has
reflection symmetry. As both atoms in the unit cell are carbon atoms, there would be no physical
difference if the graphene layer were to be replaced by its reflection, and also has rotational
symmetry when it is rotated 120◦ an atom. Each atom has three nearest-neighbor atoms located
at a distance of about 1.42 Å and shares a σ-bond with each of its three nearest neighbors, and
has a fourth bond, called the π-bond, oriented out of the plane [5]. The entire graphene lattice
can be described with the primitive cell containing the two carbon atoms A and B.

Pristine or pure graphene is nonmagnetic [6, 7] which deems(hinder) its application to
spintronics and magnetic information storage. However, there is theoretical evidence that
indicates that intrinsic properties of pure graphene can be modulated in the presence of
transition metals like (Mn, Fe, Co, Ni etc.) [8–12] doping. On the other hand, diluted magnetic
semiconductors (DMS) a new class of material that combines both the charge and spin of the
electrons becomes a promising research area in material world. In today’s technologies, two
degrees of freedom of electrons: charge and spin can be well handled and applied to practical
devices but separately [13]. The Combination of the charge and the spin of electrons will
substantially increase the capabilities of electronics such as interesting technology that can be
achieved by doping transition metal (Mn) [9]. The idea of doping graphene with manganese
can allow graphene to be applied in the field of spintronics and advanced spintronics device
applications [16]. But only a few study which focus on electronic structure [9] are studied on
doped graphen recently. However, the detailed investigation of structural, electronic structure
especially band structure, and magnetic properties of doped of graphene are not investigated
in detail. In the current study structural properties; lattice parameters, bond length, and
bond angle; electronic structure (total density of state (TDOS) and partial density of states
(PDOS)), spin-polarized energy band structure were investigated for pure (pristine) and Mn-
doped graphene where studied in detail. Furthermore, Mn-Mn distance-dependent magnetic
properties of Mn-doped graphene were modeled using spin-polarized density functional theory.

2. Computional Details

First-principles calculations are performed based on spin-polarized DFT [17] using Quantum
Espresso code [18]. Ultrasoft pseudopotentials (UPP) were used to deal with the interaction
between valence electrons and the ionic core [19]. The plane-wave basis set with a cutoff energy
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of 50 Ry was used after performing a convergence test. To investigate the doping effects of
Mn impurities on pristine graphene, the graphene was modeled by the supercell of (3×3×1)
and (4×4×1) containing 18 and 32 atoms. A large vacuum region of 15 Å was added to avoid
interactions between adjacent layers along the z-axis. Integration over the Brillouin zone
(BZ) was sampled based on Monkhorst pack 2D grid [20], which varies from 8×8×1 and
16×16×1 was used for structural relaxation and density of state calculation, respectively.
Structural optimizations were performed for all configurations using the conjugate gradient
algorithm until each component of the interatomic force became less than 0.027 eV/Å. After
structural optimizations doping were managed by replacing one (two) atoms from graphene
with manganese (Mn).

3. Effect of Single Manganese Doping on Structural Properties of
Pristine Graphene

3.1 Bond length,bond angle and lattice constant for pristine and single Mn doped
graphene

First, a geometry optimization was performed for the pristine graphene sheet, allowing all C
atoms to relax. As shown in Table 1 the C−C bond lengths of pure optimized graphene were
found to be 1.4203 Å which is closer to other recently reported results [23]. However, after the
substitution of single Mn, the C−C bond length around dopant atom measured to be 1.3720 Å
and 1.3800 Å for 3×3×1 and 4×4×1 supercell, respectively. In addition to this, as a result of
Mn doping the adjoining C−Mn bond lengths are increased to 1.6451 Å and 1.6606 Å, for the
detail see Table 1. After structural optimization, the equilibrium lattice constant of pristine
graphene was found to be 2.8495 Å, but after substitution of single Mn in C-cite the calculated
lattice constants was measured to be 2.8760 Å for 4×4×1 supercells as shown in Table 1. This
extension in lattice constant and bond lengths results in a decrease of C−C bond lengths in the
proximity of the Mn-dopant. This might be due to a larger atomic radius of Mn (1.7900 Å) atom
as compared to C (0.9100 Å) atom.

However, as shown in Table 1 and Figure 1, substitution of Mn atom does not destroy the
planarity of graphene sheet and the structural deformation are much localized around the
doping site.

Table 1. The calculated lattice constant, bond length and bond angle for pure and Mn doped graphene

Supercells System C−C bond C1-Mn1 bond C2-Mn1 Bond Lattice Bond angle (◦)
length (Å) length (Å) length (Å) constant (Å)

3×3×1 pure 1.420 - - 2.460 120
1Mn doped 1.372 1.645 1.645 2.8495 112.513

4×4×1 pure 1.420 - - 2.460 120
1Mn doped 1.380 1.660 1.66 2.876 112.981
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The calculated bond angle (C−C−C) for pristine graphene was found to be 120◦ as shown in
Table 1 after substitution of single Mn atom the bond angle (C−Mn−C) found to be 112.213◦

and 112.981◦ respectively for 3×3×1 and 4×4×1 suppecells. However, in agreement with
reference [25] the introduction of Mn atoms do not show any out-of-plane displacement.

(a) (b)

(c) (d)

Figure 1. Relaxed input structure of 3×3×1 and 4×4×1 graphene super-cells: (a) and (b) pure, (c) and
(d) single manganese doped, and (e) and (f) two manganes doped graphene

3.2 Defect formation energy and structural stability

To understand relative stability of dopant atom (Mn) in graphene (C), the dopant formation
energy (E f orm) were carried out using the following formula [14,15]:

E f orm = E tot(Mn,C)−E tot(C)−∑
i

ni(µMn −µC) , (3.1)

where E tot(Mn,C) and E tot(C) are total energies of doped and pure graphene (C) respectively,
ni is the corresponding number of species that have been added to or removed from the super
cell and µC and µMn are chemical potentials of Mn and C respectively.
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Table 2. The calculated defect formation energy of Mn-doped graphene for different suppercells

System ETot (eV) Ec (eV) µMn (eV) µC (eV) E f orm (eV)

1Mn doped 3×3 −5522.25610 −2814.12242 −2862.24286 −156.29940 −2.19022

2Mn doped 3×3 −8230.55931 −2814.12242 −2862.24286 −156.29940 −4.54997

2Mn doped 4×4 −10420.33231 −5002.77054 −2862.24286 −156.29940 −5.67485

Here the chemical potential for Mn (µMn) is obtained from its bulk BCC Mn, and the
chemical potential of graphene (µC) is also obtained from a the most stable form of carbon
called graphite. The calculated results are summarized in Table 2. As can be seen from Table 2,
the calculated defect formation energies (E f orm) of various Mn-doped configuration are which
confirm that Mn-doped graphene supercell is structurally stable and the dopants are strongly
bonded with neighboring C-atoms.

4. Effect of Single Manganese (Mn) Doping on Electrical Properties
of Pristine Graphene

4.1 Total spin polarized Density of state fore pristine and manganese doped graphene

By analyzing the total spin polarized density of states (TDOS) in pristine and Mn-doped
graphene it is observed that on substituting C atom with Mn atom the TDOS gets altered and
localized levels start to appear, especially in the vicinity of Fermi-level (EF ) as shown in Figure 2.
Moreover, as impurity concentration increase from 3.125% to 11.11% the impurity state in
the vicinity of Fermi level broaden in width for the detail see Figure 2(a-e) which open the
room to control the electronic and magnetic properties of those materials by manipulating
the concentration of dopants (Mn) which is platform to use graphene as dilute magnetic
semiconductor for spintronics application.

4.2 Partial density of states for pristine and doped graphene

To explore the contribution of various states in total DOS, the partial density of state (PDOS) is
investigated for pristine and doped graphene. PDOS graph from Figure 3 is showing that near
the Fermi level the main contribution is derived from p-orbital electrons of carbon and hence
these electrons are expected to participate in conduction processes. Figure 3(c) shows that after
doping the contribution of 2p states transpires still maximum near the Fermi level. However,
the majority of the contribution state in the vicinity of Fermi-level for Mn-doped graphene is
derived from Mn 3d orbitals These states are responsible for generating localized magnetism
and metallic character. On the other hand, the contribution of C(S) state towards total PDOS is
almost zero which justifies the C(S) electrons remain isolated and are not responsible for any
bonding.
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Figure 2. The calculated DOS for: (a) pure graphene, (b) 3.13% Mn doped graphene, (c) 5.56% Mn doped
graphene, (d) 6.25% Mn doped graphene, and (e) 11.11% Mn doped graphene. The zero energy represent
Fermi level, the blue and purple lines represents spin-up and spin-down, respectively

(a) (b) (c)

Figure 3. The calculated Partial density of states (PDOS) for pristine and Mn doped graphene carbon
(Cs,p) orbital (a), manganese (Mn-s,p,d ) orbital (b) and carbon and manganese (C-s,p) and (Mn-s,p,d )
orbital (c)

Journal of Atomic, Molecular, Condensate & Nano Physics, Vol. 7, No. 2, pp. 95–105, 2020



The Effect of Manganese(Mn) Substitutional Doping on Structural. . . : M. Y. Anagaw and S. M. Hailemariam 101

4.3 Band structure of pure and doped graphene

To investigate the effect of Mn-doping on electronic energy band structure, the band stricture of
pristine and single Mn-doped graphene was plotted by following Γ-K -M-Γ path of 2D hexagonal
Brillouin zone (Bz) of graphene. As shown in Figure 4(a,b) the band structure of pure graphene
shows that the minimum of the conduction band and the maximum of the valence band are
intersecting at the K point. This means that the electrons and holes behave as massless Dirac
Fermions [28] and they can move with the speed of 300 times less than the speed of light [2],
and hence pristine graphene becomes a zero-gap material. This result is in good agreement with
other reports [29]. As shown from Figure 4(c,d) in the case of single Mn-doped graphene, the
conduction band minimum and valence band maximum points are shifted and a small opening
of bandgap especially on the energy band structure of spin upstate is observed see Figure 4(c).
Therefore, the spin symmetry is broadened in the presence of Mn dopants which confirms the
inducement of ferromagnetic ordering in Mn-doped graphene as discussed the next section.
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Figure 4. The calculated band structure for graphene; (a) pristine spin up, (b) pristine spin down, (c)
spin up for single Mn-doped graphene and (d) spin down for single Mn-doped graphene. The zero-energy
represent Fermi level, the blue and green lines represent spin-up and spin-down respectively
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5. Effect of Manganese Doping on Magnetic Properties of Pristine
Graphene

From spin polarized DFT calculation the magnetic moment of pure graphene supper cell of
3×3×1 and 4×4×1 were found to be 0 µB . However, after introducing single manganese (Mn)
in aforementioned super cell, the magnetic moments are measured to be 2.61 µB and 1.90 µB

respectively and hence the system becomes ferromagnetic see Table 3. Thus,the ferromagnetic
property most likely originates from asymmetric spin states (DOS around the Fermi level).

Table 3. The calculated total energy in Ferromagnetic state (EFM), total Antiferromagnetic state
(EAFM), and the energy difference (∆(E)) and total magnetic moment per supercell (µ) of Mn doped
graphene

Supercell EFM (Ry) EAFM (Ry) ∆E (Ry) µ(µB) magnetic ground state

3×3×1 pristine - - - 0.00 Paramagnetic

3×3×1 1Mn doped - - 2.61 Ferromagnetic

3×3×1 2Mn doped −604.93473212 −604.94383237 0.00910025 2.96 Antiferromagnetic

4×4×1 pristine - - - 0.00 Paramagnetic

4×4×1 1Mn doped - - - 1.90 Ferromagnetic

4×4×12Mn doped −765.88002036 −765.89230931 0.01228895 2.60 Antiferromagnetic

On the best of our theoretical understanding, the magnetic properties of Mn-doped graphene
can be explained in terms of the hybridization between C(2p) orbital and Mn(3d) orbits. Thus,
the neighboring C 2p orbitals strongly interact with the Mn atom (3d5 orbital electrons) and
which further indicates with other C(2p) orbitals. Therefore, the presence p-d magnetic exchange
mechanism which stabilizes ferromagnetic ground state in doped graphene.

5.1 Magnetic interaction between dopants

In a doped system like Mn-doped graphene as the number of dopants exceed to single, how
dopant that magnetic impurity interact with each other and stabilizes the magnetic ground
state is another difficult issue in the field of magnetic semiconductors. To address such issue the
magnetic energy (∆E), the energy difference between the two dopants are in ferromagnetic (FM)
configuration and Antiferromagnetic (AFM) configuration were evaluated using the following
relation [26,27]

∆E = EFM −EAFM . (5.1)

As shown from Table 3 the calculated magnetic energy was +0.00910025 and +0.01228895 Ry
respectively for supercells of 3×3, and 4×4. Therefore, two dopants located at the nearest
neighbor distance (NN=2.460 Å) are favored to interact Antiferromagnetically to stabilize their
magnetic ground state.
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6. Conclusion
The structural, electronic, and magnetic properties of Mn-doped pristine graphene was studied
using spin-polarized DFT. The calculated results indicate that the substitution of Mn in pristine
graphene affects its structural properties: the bond length, bond angle and lattice parameters
increase due to the large atomic size of Mn in comparison to C-atom of graphene. In addition to
this, the calculated defect formation energy confirms that Mn-doped graphene is energetically
stable and the dopants are strongly hybridized with nearest neighboring C-atoms. Besides to
this, it is also found that the substitution of single Mn atom (doping) in graphene supercell turns
the nonmagnetic semiconductor properties of the pure system to half-metallic and ferromagnetic.
Furthermore, the findings also confirm that two dopants located at the nearest neighbor distance
are favored to interact Antiferromagnetically to stabilize their magnetic ground state. Based on
our result we suggest that Mn doped-graphene are a good candidate in the diluted magnetic
semiconductors for spintronics application and magnetic information storage if the detailed
experimental investigation is made.
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