On the Solution of Stochastic Generalized Burgers Equation

Authors

  • Nidal Dib Departement of Mathematics, Laboratory LAMAHIS, 20 aoí»t, 1955 University, Skikda
  • Amar Guesmia Departement of Mathematics, Laboratory LAMAHIS, 20 aoí»t, 1955 University, Skikda
  • Noureddine Daili Department of mathematics, Cite des 300 Lots Yahiaoui, 51 rue Harrag Senoussi, 19000 Setif

DOI:

https://doi.org/10.26713/cma.v9i4.918

Keywords:

Stochastic Burgers equation, Space-time white noise, Fixed point argument, Viscosity coefficient

Abstract

We are interested in one dimensional nonlinear stochastic partial differential equation: the generalized Burgers equation with homogeneous Dirichlet boundary conditions, perturbed by additive space-time white noise. We propose a result of existence and uniqueness of the local solution to the viscous equation using fixed point argument, then if we impose a condition to the viscosity coefficient we can prove that this solution is global.

Downloads

Download data is not yet available.

References

D.H. Chambers, R.J. Adrian, P. Moin, D.S. Stewart, H.J. Sung and K. Loéve, Expansion of Burgers' model of turbulence, Phys. Fluids 31(9) (1988), 2573 – 2582.

H. Choi, R. Temam, P. Moin and J. Kim, Feedback control for unsteady flow and its application to Burgers equation, J. Fluid Mechanics 253 (1993), 509 – 543.

D.-Teng Jeng, Forced model equation for turbulence, The Physics of Fluids 12(10) (1969), 2006 – 2010.

G. Da Prato, A. Debussche and R. Temam, Stochastic Burgers equation, NoDEA Nonlinear Differential Equations Appl. 1(4) (1994), 389 – 402.

G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, Cambridge University Press (1992).

F. Flandoli, Dissipativity and invariant measures for stochastic Navier Stokes equations, 24 Scuola Normale Superiore di Pisa (1993).

A. Guesmia and N. Daili, About the existence and uniqueness of solution to fractional Burgers equation, Acta Universitatis Apulensis 21(2010), 161 – 170.

A. Guesmia and N. Daili, Existence and uniqueness of an entropy solution for Burgers equations, Applied Mathematical Sciences 2(33) (2008), 1635 – 1664.

I. Hosokawa and K. Yamamoto, Turbolence in the randomly forced one dimensional Burgers flow, J. Stat. Phys. 13 (3) (1975), 245 – 272.

M. Kardar, M. Parisi and Y.C. Zhang, Dynamical scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889.

F. Rothe, Global solutions of reaction-diffusion systems, Lecture Notes in Mathematics, 1072, Springer Verlag (1984).

Downloads

Published

26-09-2018
CITATION

How to Cite

Dib, N., Guesmia, A., & Daili, N. (2018). On the Solution of Stochastic Generalized Burgers Equation. Communications in Mathematics and Applications, 9(4), 521–528. https://doi.org/10.26713/cma.v9i4.918

Issue

Section

Research Article