Opial-type Inequalities for Generalized Integral Operators With Special Kernels in Fractional Calculus

Authors

  • Muhammad Samraiz Department of Mathematics, University of Sargodha, Sargodha
  • Muhammad Arslan Afzal Department of Mathematics, University of Sargodha, Sargodha
  • Sajid Iqbal Department of Mathematics, University of Sargodha (sub-campus Bhakkar), Bhakkar
  • Artion Kashuri Department of Mathematics, Faculty of Technical Science, University Ismail Qemali, Vlora

DOI:

https://doi.org/10.26713/cma.v9i3.831

Keywords:

Opial-type inequalities, Generalized Riemann-Liouville fractional integral operator, Riemann-Liouville \(k\)-fractional integral, \((k, r)\) fractional integral of the Riemann-type

Abstract

In this article, we originate some new Opial-type inequalities on fractional calculus involving generalized Riemann-Liouville fractional integral, the Riemann-Liouville \(k\)-fractional integral, the \((k,r)\) fractional integral of the Riemann-type and the generalized fractional integral operator involving Hypergeometric function in its kernel. As special case of our general results we obtain the results of Farid et al. [7].

Downloads

Download data is not yet available.

References

R.P. Agarwal and P.Y.H. Pang, Opial inequalities with applications in differential and difference equations, Kluwer Acad. Publ., Dordrecht (1995).

R.P. Agarwal and P.Y.H. Pang, Sharp Opial-type inequalities involving higher order derivatives of two functions, Math. Nachr. 174 (1995), 5 – 20.

H. Alzer, An Opial-type inequality involving higher-order derivatives ot two functions, Appl. Math. Lett. 10(4) (1997), 123 – 128.

W.S. Cheung, Some new Opial-type inequalities, Mathematika 37(1) (1990), 136 – 142.

L. Curiel and L. Galué, A generalization of the integral operators involving the Gauss hypergeometric function, Revista Técnica de la Facultad de Ingenieria Universidad del Zulia 19(1) (1996), 17 – 22.

K.M. Das, An inequality similar to Opial's inequality, Proc. Amer. Math. Sot. 22 (1969), 258 – 261.

G. Farid, J. Peˇcari´c and Ž. Tomovski, Generalized Opial-type inequalities for differential and integral operator with special kernel in fractional calculus, J. Math. Ineq. 10(4) (2016), 1019 – 1040.

S. Iqbal, J. Peˇcari´c and M. Samraiz, Opial type inequalities for two functions with general kernels and applications, J. Math. Ineq. 8(4) (2014), 757 – 775.

A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, New York ” London (2006).

D.S. Mitrinovic, J. Pecaric and A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publisher (1993).

S. Mubeen and G.M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci. 7 (2012), 89 – 94.

S. Mubeen and S. Iqbal, Grüss type integral inequality for generalized Riemann-liouville k-fractionl integral, J. Inequal. Appl. Springer 109 (2016).

Z. Opial, it Sur une inegalite, Ann. Polon. Math. 8 (1960), 29 – 32.

M. Sarikaya, Z. Dahmani, Z. Kiris and M.E. Ahmad, (k, s)-Riemann-Liouville fractional Integral and applications, Hact. J. Math. Stat. 45(1) (2016), 77 – 89.

Downloads

Published

25-09-2018
CITATION

How to Cite

Samraiz, M., Afzal, M. A., Iqbal, S., & Kashuri, A. (2018). Opial-type Inequalities for Generalized Integral Operators With Special Kernels in Fractional Calculus. Communications in Mathematics and Applications, 9(3), 421–431. https://doi.org/10.26713/cma.v9i3.831

Issue

Section

Research Article