Gaussian Pell-Lucas Polynomials

Authors

  • Tülay Yağmur Department of Mathematics, Aksaray University, 68100 Aksaray, Turkey; Program of Occupational Health and Safety, Aksaray University, 68100 Aksaray, Turkey

DOI:

https://doi.org/10.26713/cma.v10i4.804

Keywords:

Pell-Lucas numbers, Gaussian Pell-Lucas numbers, Gaussian Pell-Lucas polynomials

Abstract

In this paper, we first define the Gaussian Pell-Lucas polynomial sequence. We then obtain Binet formula, generating function and determinantal representation of this sequence. Also, some properties of the Gaussian Pell-Lucas polynomials are investigated.

Downloads

Download data is not yet available.

References

M. Asci and E. Gurel, Gaussian Jacobsthal and Gaussian Jacobsthal Lucas Polynomials, Notes on Number Theory and Discrete Mathematics 19(1) (2013), 25 – 36.

G. Berzsenyi, Gaussian Fibonacci numbers, Fibonacci Quarterly 15(3) (1977), 233 – 236.

S. Halici and S. Oz, On Some Gaussian Pell and Pell-Lucas numbers, Ordu Univ. J. Sci. Tech. 6(1) (2016), 8 – 18.

S. Halici and S. Oz, On Gaussian Pell polynomials and their some properties, Palestine Journal of Mathematics 7(1) (2018), 251 – 256.

C. J. Harman, Complex Fibonacci numbers, Fibonacci Quarterly 19(1) (1981), 82 – 86.

A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, American Math. Monthly 70 (1963), 289 – 291, DOI: 10.2307/2313129.

A. F. Horadam and J. M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quarterly 23(1) (1985), 7 – 20.

J. H. Jordan, Gaussian Fibonacci and Lucas numbers, Fibonacci Quarterly 3 (1965), 315 – 318.

Downloads

Published

31-12-2019
CITATION

How to Cite

Yağmur, T. (2019). Gaussian Pell-Lucas Polynomials. Communications in Mathematics and Applications, 10(4), 673–679. https://doi.org/10.26713/cma.v10i4.804

Issue

Section

Research Article