On Generalized Absolute Riesz Summability Method

Authors

  • Bağdagül Kartal Erciyes University

DOI:

https://doi.org/10.26713/cma.v8i3.721

Keywords:

Riesz mean, summability factor, almost increasing sequences, infinite series, Hölder inequality, Minkowski inequality.

Abstract

This paper presents a generalization of a known theorem dealing with absolute Riesz summability of infinite series to the ${\varphi}-|\bar{N},p_{n};\delta|_{k}$ summability.

Downloads

Download data is not yet available.

Author Biography

Bağdagül Kartal, Erciyes University

Department of Mathematics

References

bibitem{bari} N.K. Bari and S.B. Ste$check{c}$kin, Best approximations and differential properties of two conjugate functions,

{it Trudy Moskov. Mat. Ob$check{s}$$check{c}$.} {bf5} (1956), 483--522.

bibitem{bor1985} H. Bor, On two summability methods, {it Math. Proc. Cambridge Philos. Soc.} {bf97} (1985), 147--149.

bibitem{bor1987} H. Bor, A note on $|bar{N},p_{n}|_{k}$ summability factors of infinite series, {it Indian J. Pure Appl. Math.} {bf18} (1987), 330--336.

bibitem{bor1988} H. Bor, Absolute summability factors for infinite series, {it Indian J. Pure Appl. Math.} {bf19} (1988), 664--671.

bibitem{bor1993} H. Bor, On local property of $midbar{N},p_{n};deltamid_{k}$ summability of factored Fourier series, {it J. Math. Anal. Appl.} {bf179} (1993), 646--649.

bibitem{app3} H. Bor and H. Seyhan, On almost increasing sequences and its applications, {it Indian J. Pure Appl. Math.} {bf30} (1999), 1041-1046.

bibitem{app4} H. Bor and H.S. "{O}zarslan, On absolute Riesz summability factors, {it J. Math. Anal. Appl.} {bf246} (2000), 657-663.

bibitem{bor2007} H. Bor, A note on absolute Riesz summability factors, {it Math. Inequal. Appl.} {bf10} (2007), 619--625.

bibitem{hardy} G.H. Hardy, Divergent Series, Oxford University Press, Oxford (1949).

bibitem{mazhar} S.M. Mazhar, A note on absolute summability factors, {it Bull. Inst. Math. Acad. Sinica.} {bf25} (1997), 233--242.

bibitem{finczgdelta} H. Seyhan, On the local property of $varphi-left|bar{N},p_{n}; deltaright| _{k}$ summability of factored Fourier series, {it Bull. Inst. Math. Acad. Sinica.} {bf25} (1997), 311-316.

bibitem{app1} H. Seyhan and A. S{"{o}}nmez, On $varphi-left|bar{N},p_{n}; deltaright| _{k}$ summability factors,

{it Portugaliae Math.} {bf54} (1997), 393--398.

bibitem{app2} H. Seyhan, A note on absolute summability factors, {it Far East J. Math. Sci.} {bf6} (1998), 157-162.

bibitem{app5} H.S. "{O}zarslan, On almost increasing sequences and its applications, {it Int. J. Math. Math. Sci.} {bf25} (2001), 293-298.

bibitem{app6} H.S. "{O}zarslan, A note on $left|bar{N},p_{n}; deltaright| _{k}$ summability factors, {it Indian J. Pure Appl. Math.} {bf33} (2002), 361--366.

bibitem{app7} H.S. "{O}zarslan, On $|bar{N},p_n;delta|_k$ summability factors, {it Kyungpook Math. J.} {bf43} (2003), 107--112.

Downloads

Published

30-12-2017
CITATION

How to Cite

Kartal, B. (2017). On Generalized Absolute Riesz Summability Method. Communications in Mathematics and Applications, 8(3), 359–364. https://doi.org/10.26713/cma.v8i3.721

Issue

Section

Research Article