Shape Preservation of the Stationary 4-Point Quaternary Subdivision Schemes
DOI:
https://doi.org/10.26713/cma.v9i3.719Keywords:
Quaternary, Approximating, Interpolating, Monotonicity, ConvexityAbstract
In this paper, the shape preserving properties of the stationary 4-point quaternary approximating and interpolating subdivision schemes of Ko [9] are fully investigated. We will analyzed what conditions should be introduced on the initial control points so that the limit curve achieved by the subdivision schemes presented in [9] are both monotonicity and convexity preserving. Conclusively the whole discussion is followed by examples.
Downloads
References
G. Akram, K. Bibi, K. Rehan and S.S. Siddiqi, Shape preservation of 4-point interpolating nonstationary subdivision scheme, Journal of Computational and Applied Mathematics 319 (2017), 480 – 492, DOI: 10.1016/j.cam.2017.01.026.
S. Amat, R. Donat and J.C. Trillo, Proving convexity preserving properties of interpolatory subdivision schemes through reconstruction operators, Applied Mathematics and Computation 219 (2013), 7413 – 7421, DOI: 10.1016/j.amc.2013.01.024.
P. Ashraf and G. Mustafa, A generalized non-stationary 4-point b-ary approximating scheme, British Journal of Mathematics & Computer Science 4 (2014), 104, DOI: 10.9734/bjmcs/2014/4120.
C. Beccari, G. Casciola and L. Romani, An interpolating 4-point C2 ternary non-stationary subdivision scheme with tension control, Computer Aided Geometric Design 24 (2007), 210 – 219, DOI: 10.1016/j.cagd.2007.02.001.
Z. Cai, Convexity preservation of the interpolating four-point C2 ternary stationary subdivision scheme, Computer Aided Geometric Design 26 (2009), 560 – 565, DOI: 10.1016/j.cagd.2009.02.004.
F. Dyn, F. Kuijt, D. Levin and R. van Damme, Convexity preservation of the four-point interpolatory subdivision scheme, Computer Aided Geometric Design 16 (1999), 789 – 792, DOI: 10.1016/s0167- 8396(99)00019-9.
N. Dyn, D. Levin and J.A. Gregory, A 4-point interpolatory subdivision scheme for curve design, Computer Aided Geometric Design 4 (1987), 257 – 268, DOI: 10.1016/0167-8396(87)90001-x.
M.F. Hassan, I. Ivrissimitzis, N.A. Dodgson and M.A. Sabin, An interpolating 4-point C2 ternary stationary subdivision scheme, Computer Aided Geometric Design 19 (2002), 1 – 18, DOI: 10.1016/s0167-8396(01)00084-x.
K.-P. Ko, Quatnary approximating 4-point subdivision scheme, Journal of the Korea Society for Industrial and Applied Mathematics 13 (2009), 307 – 314, https://portal.koreascience.or.kr/article/articleresultdetail.jsp?no=E1TAAE_2009_v13n4_307.
G. Mustafa and P. Ashraf, A new 6-point ternary interpolating subdivision scheme, Journal of Information and Computing Science 5 (2010), 199 – 210.
S.S. Siddiqi and T. Noreen, Convexity preservation of six point C2 interpolating subdivision scheme, Applied Mathematics and Computation 265 (2015), 936 – 944, DOI: 10.1016/j.amc.2015.04.024.
J. Tan, B. Wang and J. Shi, A five-point subdivision scheme with two parameters and a four-point shape-preserving scheme, Mathematical and Computational Applications 22 (2017), 22, DOI: 10.3390/mca22010022.
J. Tan, Y. Yao, H. Cao and L. Zhang, Convexity preservation of five-point binary subdivision scheme with a parameter, Applied Mathematics and Computation 245 (2014), 279 – 288, DOI: 10.1016/j.amc.2014.07.071.
C. Zhijie, Four-point scheme and convex-preserving algorithm, Journal of Computer Aided Design & Computer Graphics 6(1) (1994), 33 – 36 (in Chinese), http://en.cnki.com.cn/Article_en/ CJFDTOTAL-JSJF401.005.htm.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.