Well Posedness of A Common Coupled Fixed Point Problem
DOI:
https://doi.org/10.26713/cma.v9i1.687Keywords:
Coincidence point, Point of coincidence, Contractive type mappings, Well posedenessAbstract
In this paper, we prove rst some common coupled xed point theorems for mappings \(T : X \times X\to X\) and \(g : X \to X\) satisfying a generalized contractive condition on a metric space. We provide examples of new concepts introduced herein. We also study the well posedness of a common coupled xed point problem. Our results generalize several well known comparable results in the literature.
Downloads
References
M. Abbas, M. Ali Khan and S. Radenovic, Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Appl. Math. Comput. 217 (2010), 195 – 202, doi:10.1016/j.amc.2010.05.042.
M. Abbas and G. Jungck, Common fixed results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), 416 – 420, doi:j.jmaa.2007.09.070.
T. Abdeljawad, H. Aydi and E. Karapinar, Coupled fixed points for Meir-Keeler contractions in ordered partial metric spaces, Mathematical Problems in Engineering 2012 (2912), Article ID 327273, 20 pages, doi:10.1155/2012/327273.
H. Afshari, H.R. Marasi and H. Aydi, Existence and uniqueness of positive solutions for boundary value problems of fractional differential equations, Filomat 31 (9) (2017), 2675 – 2682, doi:10.2298/FIL1709675A.
A.H. Ansari, H. Aydi, M.A. Barakat and M.S. Khan, On coupled coincidence point results in partially ordered metric spaces via generalized compatibility and C-class functions, Journal of Inequalities and Special Functions 8 (3) (2017), 125 – 138.
H. Aydi, M. Barakat, A. Felhi and H. I¸sik, On $phi$-contraction type couplings in partial metric spaces, Journal of Mathematical Analysis 8 (4) (2017), 78 – 89.
H. Aydi, B. Damjanovic, B. Samet and W. Shatanawi, Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces, Math. Comput. Modelling 54 (2011), 2443 – 2450, doi:10.1016/j.mcm.2011.05.059.
H. Aydi, E. Karapinar and Z. Mustafa, Coupled coincidence point results on generalized distance in ordered cone metric spaces, Positivity 17 (4) (2013), 979 – 993, doi:10.1007/s11117-012-0216-2.
H. Aydi, B. Samet and C. Vetro, Coupled fixed point results in cone metric spaces for $tilde{w}$-compatible mappings, Fixed Point Theory Appl. 2011 (2011), Article ID 27, 15 pages, doi:10.1186/1687-1812- 2011-27.
H. Aydi, W. Shatanawi and M. Postolache, Coupled fixed point results for $(psi,phi)$-weakly contractive mappings in ordered G-metric spaces, Comput. Math. Appl. 63 (2012), 298 – 309, doi:10.1016/j.camwa.2011.11.022.
H. Aydi, E. Karapinar and M. Postolache, Tripled coincidence point theorems for weak $varphi$-contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2012 (2012) Article ID 44, 12 pages, doi:10.1186/1687-1812-2012-44.
H. Aydi, E. Karapinar and W. Shatanawi, Coupled fixed point results for $(psi,varphi)$-weakly contractive condition in ordered partial metric spaces, Comput. Math. Appl. 62 (2011), 4449 – 4460, doi:10.1016/j.camwa.2011.10.021.
H. Aydi, E. Karapınar and I.M. Erhan, Coupled coincidence point and coupled fixed point theorems via generalized Meir-Keeler type contractions, Abstract and Applied Analysis 2012 (2012), Article ID 781563, 22 pages, doi:10.1155/2012/781563.
G.V.R. Babu, M.L. Sandhya and M.V.R. Kameswari, A note on a fixed point theorem of Berinde on weak contractions, Carpathian J. Math. 24 (1) (2008), 8 – 12.
T.G. Bhaskar and V. Lakshmikantham, Fixed point theory in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379 – 1393, doi:10.1016/j.na.2005.10.017.
Lj.B. Ciric, Generalized contractions and fixed point theorems, Publ. Inst. Math. (Beograd) 12 (26) (1971), 19 – 26.
Lj.B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267 – 273.
Lj.B. Ciric, Fixed point of asymptotically regular mappings, Mathematical Commun. 10 (2005), 111 – 114.
B.S. Choudhury and A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal. 73 (2010), 2524 – 2531, doi:10.1016/j.na.2010.06.025.
F.S. De Blassi and J. Myjak, Sur la porosite des contractions sans point fixe, Comptes Rendus Academie Sciences Paris 308 (1989), 51 – 54.
Z.M. Fadail, G.S. Rad, V. Ozturk and S. Radenovi´c, Some remarks on coupled, tripled and n-tupled fixed points theorems in ordered abstract metric spaces, Far East Journal of Mathematical Sciences 97 (7) (2015), 809 – 839.
M.D. Guay and K.L. Singh, Fixed points of asymptotically regular mappings, Mat. Vesnik 35 (1983), 101 – 106.
G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 73 (1976), 261 – 263.
G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (4) (1986), 771 – 779, doi:10.1155/S0161171286000935.
G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci. 4 (1996), 199 – 215.
G. Jungck and B.E. Rhoades, Fixed point for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (3) (1998), 227 – 238.
Z. Kadelburg, A. Nastasi, S. Radenovic and P. Vetro, Remarks on the paper: Fixed point theorems for cyclic contractions in C¤-algebra-valued b-metric spaces, Adv. Oper. Theory 1 (1) (2016), 93 – 104.
Z. Kadelburg, S. Radenovi´c and M. Sarwar, Remarks on the paper: Coupled fixed point theorems for single-valued operators in b-metric spaces, Mathematics Interdisciplinary Research 2 (2017), 1 – 8.
R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 10 (1968), 71 – 76.
E. Karapinar, Fixed point theory for cyclic weak í-contraction, Appl. Math. Lett. 24 (2011), 822 – 825, doi:10.1016/j.aml.2010.12.016.
E. Karapınar, Coupled fixed point on cone metric spaces, Gazi University Journal of Science 24 (1) (2011), 51 – 58.
E. Karapınar, Coupled fixed point theorems for nonlinear contractions in cone metric spaces, Comput. Math. Appl. 59 (12) (2010), 3656 – 3668, doi:10.1016/j.camwa.2010.03.062.
B.K. Lahiri and P. Das, Well-posedness and porosity of certain classes of operators, Demonstratio Math. 38 (2005), 170 – 176.
V. Lakshmikantham and Lj.B. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), 4341 – 4349, doi:10.1016/j.na.2008.09.020.
Z. Mustafa, H. Huang and S. Radenovic, Some remarks on the paper: Some fixed point generalizations are not real generalizations, J. Adv. Math. Stud. 9 (1) (2016), 110 – 116.
M. Pacurar and I.A. Rus, Fixed point theory for cyclic '-contractions, Nonlinear Anal. 72 (2010), 1181 – 1187, doi:10.1016/j.aml.2010.12.016.
V. Popa, Well-posedness of fixed point problem in orbitally complete metric spaces, Stud. Cerc. St. Ser. Mat. Univ. 16 (2006), Supplement. Proceedings of ICMI 45, Ba˘cau, Sept. 18 (20) (2006), 209 – 214.
V. Popa, Well-posedness of fixed point problem in compact metric spaces, Bul. Univ. Petrol-Gaze, Ploiesti, Sec. Mat. Inform. Fiz. 60 (1) (2008), 1 – 4.
J.O. Olaleru, Some generalizations of fixed point theorems in cone metric spaces, Fixed Point Theory Appl. 2009 (2009), Article ID 657914, 10 pages, doi:10.1155/2009/657914.
S. Radenovic, Coupled fixed point theorems for monotone mappings in partially ordered metric spaces, Kragujevac Journal of Mathematics 38 (2) (2014), 249 – 257.
S. Radenovic, Some coupled coincidence points results of monotone mappings in partially ordered metric spaces, Int. J. Anal. Appl. 5 (2) (2014), 174 – 184.
S. Radenovic, Bhaskar-Lakshmikantham type-results for monotone mappings in partially ordered metric spaces, Int. J. Nonlinear Anal. Appl. 5 (2) (2014), 37 – 49, doi:10.22075/ijnaa.2014.141.
S. Reich and A.J. Zaslawski, Well posedness of fixed point problems, Far East J. Math. Sci., Special Volume, Part III (2001), 393 – 401.
B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal. 4 (12) (2010), 4508 – 4517, doi:10.1016/j.na.2010.02.026.
B. Samet, E. Karapinar, H. Aydi and V. Cojbasic Raji´c, Discussion on some coupled fixed point theorems, Fixed Point Theory Appl. 2013 (2013), Article ID 50, 12 pages, doi:10.1186/1687-1812-2013-50.
P.L. Sharma and A.K. Yuel, Fixed point theorems under asymptotic regularity at a point, Math. Sem. Notes 35 (1982), 181 – 190.
S. Sessa, On a weak commutativity condition of mappings in fixed point consideration, Publ. Inst. Math. 32 (1982), 149 – 153.
W. Shatanawi and Z. Mustafa, On coupled random fixed point results in partially ordered metric spaces, Matematicki Vesnik 64 (2012), 139 – 146.
W. Shatanawi, B. Samet and M. Abbas, Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Mathematical and Computer Modelling 55 (2012), 680 – 687, doi:10.1016/j.mcm.2011.08.042.
W. Shatanawi, H.K. Nashine and N. Tahat, Generalization of some coupled fixed point results on partial metric spaces, International Journal of Mathematics and Mathematical Sciences 2012 (2012), Article ID 686801, 10 pages, doi:10.1155/2012/686801.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.