Klein-Gordon-Maxwell System with Partially Sublinear Nonlinearity

Authors

  • Lin Li School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067
  • Shang-Jie Chen School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067
  • Shu-Zhi Song School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067

DOI:

https://doi.org/10.26713/cma.v9i2.641

Keywords:

Klein-Gordon-Maxwell system, Variational methods, Critical point theorem, Sublinear

Abstract

In this paper we shown that a class of sublinear Klein-Gordon-Maxwell system has infinitely many solutions by using a critical point theorem established by Liu and Wang and Moser iteration method.

Downloads

Download data is not yet available.

References

A. Azzollini, L. Pisani and A. Pomponio, Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system, Proc. Roy. Soc. Edinburgh Sect. A 141(3) (2011), 449–463, doi:10.1017/S0308210509001814.

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations, Topol. Methods Nonlinear Anal. 35(1) (2010), 33 – 42.

T. Bartsch, Z.Q. Wang and M. Willem, The Dirichlet problem for superlinear elliptic equations, in: Stationary partial differential equations, Vol. II, Handb. Differ. Equ., pp. 1–55. Elsevier/North-Holland, Amsterdam (2005), doi:10.1016/S1874-5733(05)80009-9.

V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys. 14(4) (2002), 409 – 420, doi:10.1142/S0129055X02001168.

A.M. Candela and A. Salvatore, Multiple solitary waves for non-homogeneous Klein-Gordon-Maxwell equations, in: More Progresses in Analysis, Proceedings of the 5th international ISAAC congress, Catania, Italy, July 25–30, 2005, pp. 753–762, World Scientific, Hackensack, NJ (2009).

P.C. Carrií£o, P.L. Cunha and O.H. Miyagaki, Existence results for the Klein-Gordon-Maxwell equations in higher dimensions with critical exponents, Commun. Pure Appl. Anal. 10(2) (2011), 709 – 718, doi:10.3934/cpaa.2011.10.709.

P.C. Carrií£o, P.L. Cunha and O.H. Miyagaki, Positive ground state solutions for the critical Klein-Gordon-Maxwell system with potentials, Nonlinear Anal. 75(10) (2012), 4068 – 4078, doi:10.1016/j.na.2012.02.023.

D. Cassani, Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations, Nonlinear Anal. 58(7-8) (2004), 733 – 747, doi:10.1016/j.na.2003.05.001.

S.J. Chen and S.Z. Song, Multiple solutions for nonhomogeneous Klein-Gordon-Maxwell equations on R3, Nonlinear Anal. Real World Appl. 22 (2015), 259 – 271, doi:10.1016/j.nonrwa.2014.09.006.

S.J. Chen and C.L. Tang, Multiple solutions for nonhomogeneous Schrödinger-Maxwell and Klein-Gordon-Maxwell equations on R3, NoDEA Nonlinear Differential Equations Appl. 17(5) (2010), 559 – 574, doi:10.1007/s00030-010-0068-z.

P.L. Cunha, Subcritical and supercritical Klein-Gordon-Maxwell equations without Ambrosetti-Rabinowitz condition, Differential Integral Equations 27(3-4) (2014), 387 – 399, URL http: //projecteuclid.org/euclid.die/1391091371

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud. 4(3) (2004), 307 – 322.

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134(5) (2004), 893–906, doi:10.1017/S030821050000353X.

P. d'Avenia, L. Pisani and G. Siciliano, Dirichlet and Neumann problems for Klein-Gordon-Maxwell systems, Nonlinear Anal. 71(12) (2009), e1985–e1995, doi:10.1016/j.na.2009.02.111.

P. d'Avenia, L. Pisani and G. Siciliano, Klein-Gordon-Maxwell systems in a bounded domain, Discrete Contin. Dyn. Syst. 26(1) (2010), 135 – 149, doi:10.3934/dcds.2010.26.135.

L. Ding and L. Li, Infinitely many standing wave solutions for the nonlinear Klein-Gordon-Maxwell system with sign-changing potential, Comput. Math. Appl. 68(5) (2014), 589 – 595, doi:10.1016/j.camwa.2014.07.001.

X. He, Multiplicity of solutions for a nonlinear Klein-Gordon-Maxwell system, Acta Appl. Math. 130 (2014), 237 – 250, doi:10.1007/s10440-013-9845-0.

W. Jeong and J. Seok, On perturbation of a functional with the mountain pass geometry, Calc. Var. Partial Differential Equations 49(1–2) (2014), 649 – 668.

L. Li and C.L. Tang, Infinitely many solutions for a nonlinear Klein-Gordon-Maxwell system, Nonlinear Anal. 110 (2014), 157 – 169, doi:10.1016/j.na.2014.07.019.

Z. Liu and Z.Q. Wang, On Clark's theorem and its applications to partially sublinear problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 32(5) (2015), 1015 – 1037, doi:10.1016/j.anihpc.2014.05.002.

D. Mugnai, Solitary waves in abelian gauge theories with strongly nonlinear potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire 27(4) (2010), 1055 – 1071, doi:10.1016/j.anihpc.2010.02.001.

G. Vaira, Semiclassical states for the nonlinear Klein-Gordon-Maxwell system, J. Pure Appl. Math. Adv. Appl. 4(1) (2010), 59 – 95.

F. Wang, Ground-state solutions for the electrostatic nonlinear Klein-Gordon-Maxwell system, Nonlinear Anal. 74(14) (2011), 4796 – 4803. doi:10.1016/j.na.2011.04.050.

F. Wang, Solitary waves for the Klein-Gordon-Maxwell system with critical exponent, Nonlinear Anal. 74(3) (2011), 827 – 835, doi:10.1016/j.na.2010.09.033.

Downloads

Published

07-07-2018
CITATION

How to Cite

Li, L., Chen, S.-J., & Song, S.-Z. (2018). Klein-Gordon-Maxwell System with Partially Sublinear Nonlinearity. Communications in Mathematics and Applications, 9(2), 239–247. https://doi.org/10.26713/cma.v9i2.641

Issue

Section

Research Article