On Vertex-transitive Cayley Graphs of Finite Transformation Semigroups with Restricted Range

Authors

  • Chunya Tisklang Thai Government Scholarships in the Area of Science and Technology (Ministry of Science and Technology) 111 Thailang Science Park, Patumthani 12120, Thailand; Department of Mathematics Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
  • Sayan Panma Department of Mathematics Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand Centre of Excellence in Mathematics, CHE, Bangkok 10400, Thailand

DOI:

https://doi.org/10.26713/cma.v9i2.640

Keywords:

Cayley graph, Vertex-transitive graph, Transformation semigroup, Restricted range

Abstract

Let \(T(X)\) be the semigroup of all transformations on a set \(X\). For a non-empty subset \(Y\) of \(X\), denoted by \(T(X,Y)\) the subsemigroup of \(T(X)\) consisting of all transformations whose range is contained in \(Y\).  Kelarev and  Praeger in [9] gave necessary and sufficient conditions for all vertex-transitive Cayley graphs of semigroups. In this paper, we give similar descriptions for all vertex-transitive Cayley graphs of \(T(X,Y)\).

Downloads

Download data is not yet available.

References

Sr. Arworn, U. Knauer, and N. Na Chiangmai, Characterization of digraphs of right (left) zero unions of groups, Thai J. Math. 1(1) (2003), 131 – 140.

N. Biggs, Algebraic Graph Theory, 2nd edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge (1993).

G. Cooperman and L. Finkelstein, New methods for using Cayley graphs in interconnection networks, Discrete Appl. Math. 37/38 (1992), 95 – 118.

S. Fan and Y. Zeng, On Cayley graphs of bands, Semigroup Forum 74(1) (2007), 99 – 105.

C. Godsil and G. Royle, Algebraic graph theory, Volume 207 of Graduate Texts in Mathematics, Springer-Verlag, New York (2001).

A.W. Harrow, Quantum expanders from any classical Cayley graph expander, Quantum Inf. Comput. 8(8-9) (2008), 715 – 721.

M.-C. Heydemann, Cayley graphs and interconnection networks, in: Graph symmetry (Montreal, PQ, 1996), Volume 497 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 167–224, Kluwer Acad. Publ., Dordrecht (1997).

A.V. Kelarev, On undirected Cayley graphs, Australas. J. Combin. 25 (2002), 73 – 78.

A.V. Kelarev and C.E. Praeger, On transitive Cayley graphs of groups and semigroups, European J. Combin. 24(1) (2003), 59 – 72.

A.V. Kelarev and S.J. Quinn, A combinatorial property and Cayley graphs of semigroups, Semigroup Forum 66(1) (2003), 89 – 96.

B. Khosravi and M. Mahmoudi, On Cayley graphs of rectangular groups, Discrete Math. 310(4) (2010), 804 – 811.

O. Lopez Acevedo and T. Gobron, Quantum walks on Cayley graphs, J. Phys. A 39(3) (2006), 585 – 599.

S. Panma, Characterization of Cayley graphs of rectangular groups, Thai J. Math. 8(3) (2010), 535 – 543.

S. Panma, U. Knauer and Sr. Arworn, On transitive Cayley graphs of strong semilattices of right (left) groups, Discrete Math. 309(17) (2009), 5393 – 5403.

S. Panma, N. Na Chiangmai, U. Knauer and Sr. Arworn, Characterizations of Clifford semigroup digraphs, Discrete Math. 306(12) (2006), 1247 – 1252.

K. Sangkhanan and J. Sanwong, Partial orders on semigroups of partial transformations with restricted range, Bull. Aust. Math. Soc. 86(1) (2012), 100 – 118.

J. Sanwong and W. Sommanee, Regularity and Green's relations on a semigroup of transformations with restricted range, Int. J. Math. Math. Sci., 2008 (2008), Article ID 794013, 11.

J. S. V. Symons, Some results concerning a transformation semigroup, J. Austral. Math. Soc. 19(4) (1975), 413 – 425.

C. Tisklang and S. Panma, On connectedness of Cayley graphs of finite transformation semigroups, Thai J. Math. (special issue) (2018), 261 – 271.

Downloads

Published

30-06-2018
CITATION

How to Cite

Tisklang, C., & Panma, S. (2018). On Vertex-transitive Cayley Graphs of Finite Transformation Semigroups with Restricted Range. Communications in Mathematics and Applications, 9(2), 219–227. https://doi.org/10.26713/cma.v9i2.640

Issue

Section

Research Article