Apostol Type \((p, q)\)-Bernoulli, \((p, q)\)-Euler and \((p, q)\)-Genocchi Polynomials and Numbers
DOI:
https://doi.org/10.26713/cma.v8i1.512Keywords:
\((p, q)\)-calculus, Apostol Bernoulli polynomials, Apostol Euler polynomials, Apostol Genocchi polynomials, Generating function, Cauchy productAbstract
The main subject of this work is to introduce and investigate a new generalizations of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials under the theory of post quantum calculus, denoted by \((p, q)\)-calculus. We call them Apostol type \((p, q)\)-Bernoulli polynomials of order \(\alpha\), Apostol type \((p, q)\)-Euler polynomials of order \(\alpha\) and the Apostol type \((p, q)\)-Genocchi polynomials of order \(\alpha\). We derive some of their properties involving addition theorems, difference equations, derivative properties, recurrence relationships, and so on. Also, \((p, q)\)-analogues of some familiar formulae belonging to usual Apostol-Bernoulli, Euler and Genocchi polynomials are shown. Furthermore, \((p, q)\)-generalizations of Cheon's main result [G.S. Cheon, Appl. Math. Lett. 16 (2003) 365–368] and the formula of Srivastava and Pintér [H.M. Srivastava, A. Pintér, Appl. Math. Lett. 17 (2004), 375–380] are investigated.Downloads
References
T.M. Apostol, On the Lerch Zeta function, Pasific J. Math. 1 (1951), 161–167, https://projecteuclid.org/euclid.pjm/1103052188.
R. Chakrabarti and R. Jagannathan, A (p, q)-oscillator realization of two-parameter quantum algebras, J. Phys. A: Math. Gen. 24 (1991), L711, http://iopscience.iop.org/article/10.1088/0305-4470/24/13/002/pdf.
G.S. Cheon, A note on the Bernoulli and Euler polynomials, Appl. Math. Lett. 16 (2003) 365–368, doi:10.1016/S0893-9659(03)80058-7.
R.B. Corcino, On P,Q-Binomial coefficients, Electron. J. Combin. Number Theory 8 (2008), #A29, http://www.westga.edu/char126relaxintegers/cgi-bin/get.cgi.
U. Duran, M. Acikgoz and S. Araci, On (p, q)-Bernoulli, (p, q)-Euler and (p, q)-Genocchi polynomials, J. Comput. Theor. Nanosci. 13 (2016), 7833–7846.
U. Duran, M. Acikgoz and S. Araci, On some polynomials derived from (p, q)-calculus, J. Comput. Theor. Nanosci. 13 (2016), 7903–7908.
B.S. El-Desouky and R.S. Gomaa, A new unified family of generalized Apostol-Euler, Bernoulli and Genocchi polynomials, Appl. Math. Comput. 247 (2014), 695–702, http://dx.doi.org/10.1016/j.amc.2014.09.002.
V. Gupta, (p, q)-Baskakov-Kantorovich operators, Appl. Math. Inf. Sci. 10 (4) (2016), 1551–1556, doi:doi:10.18576/amis/100433.
R. Jagannathan and K.S. Rao, Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series, arXiv:math/0602613 [math.NT], https://arxiv.org/abs/math/0602613.
Y. He, S. Araci, H.M. Srivastava and M. Acikgoz, Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials, Appl. Math. Comput. 262 (2015), 31–41 http://dx.doi.org/10.1016/j.amc.2015.03.132.
V. Kurt, New identities and relations derived from the generalized Bernoulli polynomials, Euler polynomials and Genocchi polynomials, Adv. Difference Equ. 2014 (2014), 5 pages, doi:doi:10.1186/1687-1847-2014-5.
B. Kurt, A note on the Apostol type q-Frobenius-Euler polynomials and generalizations of the Srivastava-Pinter addition theorems, Filomat 30 (1) (2016), 65–72, doi:doi:10.2298/FIL1601065K.
V. Kurt, Some symmetry identities for the unified Apostol-type polynomials and multiple power sums, Filomat 30 (3) (2016), 583–592, doi:doi:10.2298/FIL1603583K.
Q.-M. Luo, On the Apostol-Bernoulli polynomials, Cent. Eur. J. Math. 2 (4) (2004), 509-515 https://www.degruyter.com/view/j/math.2004.2.issue-4/BF02475959/bf02475959.pdf.
Q.-M. Luo, Some results for the q-Bernoulli and q-Euler polynomials, J. Math. Anal. Appl. 363 (2010), 7–10, doi:doi:10.1016/j.jmaa.2009.07.042.
Q.-M. Luo, H.M. Srivastava, q-extension of some relationships between the Bernoulli and Euler polynomials, Taiwanese J. Math. 15 (1) (2011), 241–257, http://www.jstor.org/stable/taiwjmath.15.1.241.
Q.-M. Luo, H. M. Srivastava, Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl. 51 (2006), 631–642, http://dx.doi.org/10.1016/j.camwa.2005.04.018.
Q.-M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl. 308 (2005), 290–302, http://dx.doi.org/10.1016/j.jmaa.2005.01.020.
N.I. Mahmudov, On a class of q-Benoulli and q-Euler polynomials, Adv. Difference Equ. 2013 (2013), 108 pages, doi:10.1186/1687-1847-2013–108.
N.I. Mahmudov and M.E. Keleshteri, q-Extension for the Apostol type polynomials, J. Appl. Math. 2014, ID 868167, 7 pages, http://dx.doi.org/10.1155/2014/868167.
N.I. Mahmudov, q-Analogues of the Bernoulli and Genocchi polynomials and the Srivastava-Pintér addition theorems, Discrete Dyn. Nat. Soc. 2012, Article ID 169348 (2012), http://dx.doi.org/10.1155/2012/169348.
G.V. Milovanovic, V. Gupta and N. Malik, (p, q)-Beta functions and applications in approximation, Bol. Soc. Mat. Mex. 2016, 1–19, doi:doi:10.1007/s40590-016-0139-1.
M.A. Ozarslan, Unified Apostol-Bernoulli, Euler and Genochi polynomials, Comp. Math. Appl. 62 (2011), 2452–2462, http://dx.doi.org/10.1016/j.camwa.2011.07.031.
P.N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, arXiv:1309.3934 [math.QA], https://arxiv.org/abs/1309.3934.
H.M. Srivastava, Some generalizations and basic (or q-)extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci. 5 (2011), 390–444, http://mobile.www.naturalspublishing.com/files/published/819u1z9mqbk1d8.pdf.
H.M. Srivastava and A. Pinter, Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett. 17 (2004), 375–380, doi:doi:10.1016/S0893-9659(04)90077-8.
H.M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000) 77–84, https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/some-formulas-for-the-bernoulli-and-euler-polynomials-at-rational-arguments/A77F3A8708924E9E99F2E9F8ECDFE983.
R. Tremblay, S. Gaboury and B.-J. Fugère, A new class of generalized Apostol–Bernoulli polynomials and some analogues of the Srivastava-Pintér addition theorem, Appl. Math. Lett. 24 (2011) 1888–1893, http://dx.doi.org/10.1016/j.aml.2011.05.012.
W. Wang, C. Jia and T. Wang, Some results on the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl. 55 (2008), 1322–1332, http://dx.doi.org/10.1016/j.camwa.2007.06.021.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.