On Complex $\eta $-Einstein Normal Complex Contact Metric Manifolds

Authors

  • Aysel - Turgut Vanli Gazi University
  • Inan - Unal Munzur

DOI:

https://doi.org/10.26713/cma.v8i3.509

Keywords:

Normal complex contact metric manifold, conformal curvature tensor, concircular curvature tensor, projectively semi-symmetric, complex $\eta -$Einstein

Abstract

The aim of this paper is focusing on $\eta$-Einstein geometry of complex contact metric manifolds. We give the definition of complex $\eta$-Einstein normal complex contact metric manifolds. In addition, we study on Weyl conformal curvature tensor $\mathcal{W}$ and concircular curvature tensor $\mathcal{Z}$ and we show that a normal complex contact metric manifold which satisfy $\mathcal{Z}\left( U,X\right) .\mathcal{W}=0$ and $\mathcal{Z}\left( V,X\right). \mathcal{W}=0$ complex $\eta$-Einstein. Also, we prove that a projectively semi-symmetric normal complex contact metric manifold is complex $\eta$-Einstein.

Downloads

Download data is not yet available.

Author Biographies

Aysel - Turgut Vanli, Gazi University

Math.

Inan - Unal, Munzur

Computer Engineering

References

bibitem{BL98} C. Baikoussis, D. E. Blair and G. Gouli-Andreou, Holomorphic

Legendre curves in the complex Heisenberg group, Bull. Inst. Math. Acad.

Sinica 26, 179-194 (1998).

bibitem{VAN2006} D. E. Blair and A. Turgut Vanli, Corrected Energy of

Distributions for $3$-Sasakian and Normal Complex Contact Manifolds, Osaka

J. Math 43, 193-200 (2006).

bibitem{BL2010} D. E. Blair, Riemannian Geometry of Contact and Symplectic

Manifolds, 2nd edn. Birkh"{a}user, Boston (2010).

bibitem{BL2011} D. E. Blair and V. M. Molina, Bochner and conformal

flatness on normal complex contact metric manifolds, Ann Glob Anal Geom

v.39, 249-258 (2011) .

bibitem{BL2012} D. E. Blair and A. Mihai, Symmetry in complex Contact

Geometry, Rocky Mountain J. Math. v.42, (2), 451-465 (2012).

bibitem{Blair and tripathi} D. E. Blair, K. Jeong-Sik and M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold,

J. Korean Math. Soc. 42, No. 5, 883-892 (2005).

bibitem{For2000} B. Foreman, Complex contact manifolds and hyperk"{a}hler

geometry, Kodai Math. J. v. 23 (1), 12-26 (2000).

bibitem{IMADA-yayinlanan} M. Imada, Construction of Complex Contact

Manifolds via Reduction, Tokyo J. of Math. v. 37, (2), 509-522 (2014).

bibitem{Imada-arxiv} M. Imada, Complex almost contact metric structures on

complex hypersurfaces in hyperk"{a}hler manifolds, preprint,

arXiv:1511.00890v1 (2015).

bibitem{IK79} S. Ishihara and M. Konishi, Real contact $3$-structure and complex

contact structure, Southeast Asian Bulletin of Math., 3, 151--161. (1979)

bibitem{IK80} S. Ishihara and M. Konishi, Complex almost contact

manifolds, Kodai Math. J. v.3, 385-396 (1980).

bibitem{IK82} S. Ishihara and M. Konishi, Complex almost contact structures in

a complex contact manifold, Kodai Math. J., 5, 30--37. (1982).

bibitem{KOb59} S. Kobayashi, Remarks on complex contact manifolds, Proc.

Amer. Math. Soc. v.10, 164-167 (1959).

bibitem{KB2000} B. Korkmaz, Normality of complex contact manifolds, Rocky

Mountain J. Math. v.30, 1343-1380 (2000).

bibitem{VAN2004} A. Turgut Vanli and D. E. Blair, The Boothby-Wang

Fibration of the Iwasawa Manifold as a Critical Point of the Energy,

Monatsh. Math. v.147, 75-84 (2006).

bibitem{VAN2015} A. Turgut Vanli, A. and I. Unal, Curvature properties of

normal complex contact metric manifolds, preprint, arXiv:1510.05916v1 (2015)

bibitem{YANO} K. Yano and S. Sawaski, Riemannian manifolds

admitting a conformal transformation group, J. Diff. Geo. 2, 161-184 (1968).

Downloads

Published

30-12-2017
CITATION

How to Cite

Turgut Vanli, A. .-., & Unal, I. .-. (2017). On Complex $\eta $-Einstein Normal Complex Contact Metric Manifolds. Communications in Mathematics and Applications, 8(3), 301–313. https://doi.org/10.26713/cma.v8i3.509

Issue

Section

Research Article