Dissipative Hyperbolic Geometric Flowon Modified Riemann Extensions

Authors

  • H. G. Nagaraja Department of Mathematics, Bangalore University, Bengaluru 560001
  • Harish D. Department of Mathematics, Bangalore University, Bengaluru 560001

DOI:

https://doi.org/10.26713/cma.v6i2.311

Keywords:

Dissipative hyperbolic flow, Modified Riemann extension, Evolution equations

Abstract

We study the properties of modified Riemann extensions evolving under dissipative hyperbolic geometric flow with examples.

Downloads

Download data is not yet available.

References

E. Calvino-Louzao et al., The geometry of modified Riemannian extensions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465 (2107) (2009), 2023–2040.

E. Calvino-Louzao, E. Garcí­a-Rí­o and R. Vázquez-Lorenzo, Riemann extensions of torsion-free connections with degenerate Ricci tensor, Canad. J. Math. 62 (5) (2010), 1037–1057.

W.-R. Dai, D.-X. Kong and K. Liu, Dissipative hyperbolic geometric flow, Asian J. Math. 12 (3) (2008), 345–364.

W.-R. Dai, D.-X. Kong and K. Liu, Hyperbolic geometric flow (I): short-time existence and nonlinear stability, Pure Appl. Math. Q. 6 (2) (2010), Special Issue: In honor of Michael Atiyah and Isadore

Singer, 331–359.

V.S. Dryuma, Teoret. Mat. Fiz. 146 (1) (2006), 42–54; translation in Theoret. and Math. Phys. 146 (1) (2006), 34–44.

L.P. Eisenhart, Fields of parallel vectors in Riemannian space, Ann. of Math. 39 (2) (1938), 316–321.

A. Gezer, L. Bilen and A. Cakmak, Properties of modified Riemannian extensions, arXiv:1305. 4478v2 [math.DG] 26 May 2013.

D.-X. Kong and K. Liu, Wave character of metrics and hyperbolic geometric flow, J. Math. Phys. 48 (10) (2007), 103508, 14 p.

O. Kowalski and M. Sekizawa, The Riemann extensions with cyclic parallel Ricci tensor, Math. Nachr. 287 (8-9) (2014), 955–961.

W. Lu, Evolution equations of curvature tensors along the hyperbolic geometric flow, Chin. Ann. Math. Ser. B 35 (6) (2014), 955–968.

E.M. Patterson and A.G. Walker, Riemann extensions, Quart. J. Math., Oxford Ser. 3 (2) (1952), 19–28.

A.G. Walker, Canonical form for a Riemannian space with a parallel field of null planes, Quart. J. Math., Oxford Ser. 1 (2) (1950), 69–79.

Downloads

Published

25-12-2015
CITATION

How to Cite

Nagaraja, H. G., & D., H. (2015). Dissipative Hyperbolic Geometric Flowon Modified Riemann Extensions. Communications in Mathematics and Applications, 6(2), 55–60. https://doi.org/10.26713/cma.v6i2.311

Issue

Section

Research Article