Second Hankel Determinant for Certain Subclass of p-Valent Analytic Function

Authors

DOI:

https://doi.org/10.26713/cma.v15i3.2831

Keywords:

p-valent analytic function, Second Hankel determinant, Fekete-Szegö functional

Abstract

The aim of this paper is to find sharp upper bound for the Second Hankel determinant and Fekete-Szegö functional for certain subclass of p-valent analytic function.

Downloads

References

B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM Journal on Mathematical Analysis 15(4) (1984), 737 – 745, DOI: 10.1137/0515057.

P. L. Duren, Univalent Functions, Grundlehren der mathematischen Wissenschaften series, Springer, New York, xiv + 384 pages (1983).

U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, University of California Press, Berkeley, 262 pages (1958), DOI: 10.1525/9780520355408.

F. H. Jackson, XI – On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh 46(2) (1909), 253 – 281, DOI: 10.1017/S0080456800002751.

A. Janteng, S. A. Halim and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, Journal of Inequalities in Pure & Applied Mathematics 7(2) (2006), Article 50, URL: https://eudml.org/doc/128719.

A. Janteng, S. A. Halim and M. Darus, Hankel determinant for starlike and convex functions, International Journal of Mathematical Analysis 13(1) (2007), 619 – 625.

D. V. Krishna and T. Ramreddy, Hankel determinant for p-valent starlike and convex functions of order α, Novi Sad Journal of Mathematics 42(2) (2012), 89 – 96, URL: https://sites.dmi.uns.ac.rs/nsjom/Papers/42_2/NSJOM_42_2_089_102.pdf.

S. N. Kund and A. K. Mishra, The second Hankel determinant for a class of analytic functions associated with the Carlson-Shaffer operator, Tamkang Journal of Mathematics 44(1) (2013), 73 – 82, DOI: 10.5556/j.tkjm.44.2013.963.

R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proceedings of the American Mathematical Society 87(2) (1983), 251 – 257, DOI: 10.1090/S0002-9939-1983-0681830-8.

T. H. MacGregor, Functions whose derivative have a positive real part, Transactions of the American Mathematical Society 104(3) (1962), 532 – 537, DOI: 10.2307/1993803.

J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean pvalent functions, Transactions of the American Mathematical Society 223 (1976), 337 – 346, DOI: 10.2307/1997533.

Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, Journal of the London Mathematical Society s1-41 (1996), 111 – 122, DOI: 10.1112/jlms/s1-41.1.111.

C. Pommerenke, Univalent functions, in: Studia Mathematica Mathematische Lehrbücher, Vandenhoeck and Ruprecht (1975).

B. Simon, Orthogonal Polynomials on the Unit Circle: Part 1: Classical Theory; Part 2: Spectral Theory, American Mathematical Society Colloquium Publications, Vol. 54, American Mathematical Society, Providence, RI (2005).

S. Ruscheweyh, New criteria for univalent functions, Proceedings of the American Mathematical Society 49(1) (1975), 109 – 115.

D. V. Krishna, B. Venkateshwarulu and T. R. Reddy, Coefficient inequality for certain subclass of p-valent analytic functions whose reciprocal derivative has a positive real part, Matematicki Vesnik 68(2) (2016), 87 – 92.

T. Yavuz, Second Hankel determinant for analytic functions defined by Ruscheweyh derivative, International Journal of Analysis and Applications 8(1) (2015), 63 – 68, URL: https://etamaths.com/index.php/ijaa/article/view/511.

Downloads

Published

30-11-2024
CITATION

How to Cite

Ashwini, S., Salestina, M. R., & Vijaya, . K. (2024). Second Hankel Determinant for Certain Subclass of p-Valent Analytic Function. Communications in Mathematics and Applications, 15(3), 1255–1261. https://doi.org/10.26713/cma.v15i3.2831

Issue

Section

Research Article