Painlevé Analysis, Lie Symmetries and Abundant Wave Solutions for Family Fifth Order Kdv Equations

Authors

  • Ahmed Gaber Department of Mathematics, College of Science Al-Zulfi, Majmaah University, 11952, Suadi Arabia https://orcid.org/0009-0006-0948-3207
  • Doaa M. Mostafa Department of Mathematics, College of Science, Qassim University, P. O. Box 6644, Buraidah 51452, Saudi Arabia; Department of Mathematics, Faculty of Education, Ain Shams University, Heliopolis, Roxy, Cairo, Egypt https://orcid.org/0000-0002-0888-8978

DOI:

https://doi.org/10.26713/cma.v15i3.2752

Keywords:

Painlevé analysis, Lie symmetries, (G′/G)-expansion method, Wave solutions, Fifth-order KdV equation

Abstract

In this paper, we study integrability, similarity reduction and obtaining abundant solutions for the family fifth-order KdV equation. This equation expresses five different forms of the KdV equation, each of these equations has different applications in many fields, including fluid mechanics, ocean science and optics. We utilized Painlevé property for the governing equation to prove that the equation possesses Painlevé test. Then, the symmetry method is used to study the similarity reductions for the governing equation. Subsequently, we obtained a novel type of exact solutions for family KdV fifth-order by using (G/G)-expansion method. The obtained solutions included hyperbolic and trigonometric functions. The solutions are also presented in 3D shapes to show their properties contained kink wave, singular wave, anti-kink wave, periodic wave and solitary wave solution.

Downloads

References

H. Ahmad, T. A. Khan and S.-W. Yao, An efficient approach for the numerical solution of fifth-order KdV equations, Open Mathematics 18(1) (2020), 738 – 748, DOI: 10.1515/math-2020-0036.

H. Ahmad, T. A. Khan, I. Ahmad, P. S. Stanimirovi´c and Y.-M. Chu, A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations, Results in Physics 19(2020), 103462, DOI: 10.1016/j.rinp.2020.103462.

A. Biswas, A. Sonmezoglu, M. Ekici, M. Mirzazadeh, Q. Zhou, A. S. Alshomrani, S. P. Moshokoa and M. Belic, Optical soliton perturbation with fractional temporal evolution by extended G′/G expansion method, Optik 161 (2018), 301 – 320, DOI: 10.1016/j.ijleo.2018.02.051.

A. El-H. Ebaid, Generalization of He’s exp-function method and new exact solutions for burgers equation, Zeitschrift für Naturforschung A 64(9-10) (2009), 604 – 608, DOI: 10.1515/zna-2009-9-1010.

A. A. Gaber, Integrability and wave solutions for fifth-order KdV type equation, International Journal of Advanced and Applied Science 7(4) (2020), 103 – 106, DOI: 10.21833/ijaas.2020.04.013.

A. A. Gaber and A. Bekir, Integrability, Similarity reductions and new classes of exact solutions for (3+1)-d potential Yu–Toda–Sasa–Fukuyama equation, Qualitative Theory of Dynamical Systems 23 (2024), Article number 235, DOI: 10.1007/s12346-024-01090-0.

A. A. Gaber and A.-M. Wazwaz, Symmetries and dynamic wave solutions for (3+1)-dimensional potential Calogero–Bogoyavlenskii–Schiff equation, Journal of Ocean Engineering and Science in press (2022), (available online 26 May 2022), DOI: 10.1016/j.joes.2022.05.018.

A. Gaber and H. Ahmad, Solitary wave solutions for space-time fractional coupled integrable dispersionless system via generalized Kudryashov method, Facta Universitatis, Series: Mathematics and Informatics 35(5) (2020), 1439 – 1449, DOI: 10.22190/FUMI2005439G.

A. A. Gaber and M. H. Shehata, New approach of MHD boundary layer flow towards a porous stretching sheet via symmetry analysis and the generalized exp-function method, International Journal of Analysis and Applications 18(5) (2020), 738 – 747, DOI: 10.28924/2291-8639-18-2020-738.

A. A. Gaber, A. F. Aljohani, A. Ebaid and J. T. Machado, The generalized Kudryashov method for nonlinear space–time fractional partial differential equations of Burgers type, Nonlinear Dynamics 95 (2019), 361 – 368, DOI: 10.1007/s11071-018-4568-4.

A. A. Gaber, A.-M. Wazwaz and M. M. Mousa, Similarity reductions and new exact solutions for (3 + 1)-dimensional B–B equation, Modern Physics Letters B 38(05) (2024), 2350243, DOI: 10.1142/S0217984923502433.

D. Lu, A. R. Seadawy, M. Arshad and J. Wang, New solitary wave solutions of (3+1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications, Results in Physics 7(2017), 899 – 909, DOI: 10.1016/j.rinp.2017.02.002.

M. H. M. Moussa and A. A. Gaber, Symmetry analysis and Solitary wave solutions of nonlinear ion-acoustic waves equation, International Journal of Analysis and Applications 18(3) (2020), 448 – 460, DOI: 10.28924/2291-8639-18-2020-448.

P. J. Olver, Application of Lie Groups to Differential Equations, 1st edition, Springer-Verlag, New York, xxvi + 500 pages (1986), URL: https://link.springer.com/book/10.1007/978-1-4684-0274-2.

Y. S. Özkan and E. Yasar, On the exact solutions of nonlinear evolution equations by the improved tan(φ/2)-expansion method, Pramana 94 (2020), Article number 37, DOI: 10.1007/s12043-019-1883-3.

B. Ren, J. Lin and W.-L. Wang, Painlevé analysis, infinite dimensional symmetry group and symmetry reductions for the (2+1)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani equation, Communications in Theoretical Physics 75 (2023), 085006, DOI: 10.1088/1572-9494/ace350.

A. R. Seadawy, M. Iqbal and D. Lu, Construction of soliton solutions of the modify unstable nonlinear Schrödinger dynamical equation in fiber optics, Indian Journal of Physics 94 (2020), 823 – 832, DOI: 10.1007/s12648-019-01532-5.

J. Weiss, M. Tabo and G. Carnevale, The Painlevé property for partial differential equations, Journal of Mathematical Physics 24(3) (1983), 522 – 526, DOI: 10.1063/1.525721

Z. Zhao and L. He, Lie symmetry, nonlocal symmetry analysis, and interaction of solutions of a (2+1)-dimensional KdV–mKdV equation, Theoretical and Mathematical Physics 206(2) (2021), 142 – 162, DOI: 10.1134/S0040577921020033.

Downloads

Published

30-11-2024
CITATION

How to Cite

Gaber, A., & Mostafa, D. M. (2024). Painlevé Analysis, Lie Symmetries and Abundant Wave Solutions for Family Fifth Order Kdv Equations. Communications in Mathematics and Applications, 15(3), 1231–1240. https://doi.org/10.26713/cma.v15i3.2752

Issue

Section

Research Article