Decomposition of Bipolar Pythagorean Fuzzy Matrices

Authors

  • K. SIVARANJANI ANNAMALAI UNIVERSITY
  • S. SRIRAM Annamalai University

Keywords:

Intuitionistic fuzzy matrix, Bipolar pythagorean fuzzy matrix, Modal operator

Abstract

This paper presents novel findings on modal operators through the use of max-min composition, analyzing properties such as reflexivity, symmetry, transitivity, and idempotency related to necessity and possibility. It explores the necessary and sufficient conditions for transitive and c-transitive closure matrices using modal operators. Additionally, a new composition operator, labeled as ”∧m ” is introduced and its algebraic properties are thoroughly discussed. The study also achieves a decomposition of a BPyFM utilizing the new composition operator and modal operators.

Downloads

Download data is not yet available.

References

K.T.Atanassov, Intuitionistic Fuzzy sets, Fuzzy sets and systems, 20(1) (1986), 87-96,

doi:https://doi.org/10.1016/S0165-0114(86)80034-3.

M. Bhowmik and M. Pal, Generalized intuitionistic fuzzy matrices, Far East Journal of

Mathematical Sciences, 29(3) (2008), 142-152.

H. Bustince and P. Burillo, Structure on intuitionistic fuzzy relation, Fuzzy Sets and Sys-

tems, 78(3) (1996), 293-303, doi:https://doi.org/10.1016/0165-0114(96)84610-0.

V. Chinnadurai, G. Thirumurugan and M. Umamaheswari, Novel operations in bipolar

pythagorean fuzzy matrices, International Journal of Advanced Science and Technology, 16

(2020), 5387-5401.

D. Ezhilmaran and K. Sankar, Morphism of bipolar intuitionistic fuzzy graphs,

Journal of Discrete Mathematical Science and Cryptography, 18(5) (2015), 605-621,

doi:10.1080/09720529.2015.1013673.

H. Hashimoto, Decomposition of fuzzy matrices, Siam Journal of Algebraic and Discrete

Methods, 6(1) (1985), 32-38, doi:https://doi.org/10.1137/0606003.

K. H. Kim and R. W. Roush, Generalized fuzzy matrices, Fuzzy Sets and System, 4 (1980),

-315, doi:https://doi.org/10.1016/0165-0114(80)90016-0.

P. Murugadas and K. Lalitha, Demposition of an intuitionistic fuzzy matrices using impli-

cation operators, Annals of Fuzzy Mathematical and Informatics, 11(1) (2015), 11-18.

P. Murugadas, S. Sriram and T. Muthuraji, Modal operators in intuitionistic

fuzzy matrices, International Journal of Computer Application, 90(17) (2014), 1-4,

doi:10.5120/15809-4535.

P. Murugadas, Contributuion to a study on generalized fuzzy matrices, Ph.D Thesis, De-

partment of Mathematices, Annamalai University, (2011).

T. Muthuraji, S. Sriram and P. Murugadas, Decomposition of intuitionis-

tic fuzzy matrices, Fuzzy Information and Engineering, 8 (2016), 345-354,

doi:https://doi.org/10.1016/j.fiae.2016.09.003.

M. Pal, S. K. Khan and Amiya K Shyamal, Intuitionistic fuzzy matrices, Notes on Intu-

itionistic Fuzzy Sets, 8(2) (2002), 51-62.

R. Pradhan and M. Pal, Some results on generalized inverse of intuitionis-

tic fuzzy matrices, Fuzzy Information and Engineering, 6(2) (2014), 133-145,

doi:https://doi.org/10.1016/j.fiae.2014.08.001.

M. G. Thomason, Convergence of power of a fuzzy matrix, Journal of Mathematical Analysis

and Applications, 57 (1977), 476-480, doi:https://doi.org/10.1016/0022-247X(77)90274-8.

L. A. Zadeh, Fuzzy sets, Journal of Information and Control, 8 (1965), 338-353,

doi:https://doi.org/10.1016/S0019-9958(65)90241-X.

Published

14-11-2024

How to Cite

K. SIVARANJANI, & S. SRIRAM. (2024). Decomposition of Bipolar Pythagorean Fuzzy Matrices. Communications in Mathematics and Applications, 15(2). Retrieved from http://rgnpublications.com/journals/index.php/cma/article/view/2739

Issue

Section

Research Article