A Second-Order Numerical Approximation for Volterra-Fredholm Integro-Differential Equations With Boundary Layer and an Integral Boundary Condition

Authors

DOI:

https://doi.org/10.26713/cma.v15i3.2707

Keywords:

Singular perturbation, Integro-differential equation, Finite difference methods, Piecewise uniform mesh, Uniform convergent

Abstract

This study introduces a novel second-order computational technique to effectively tackle Volterra-Fredholm integro-differential equations, which are characterized by integral conditions and boundary layers. Initially, some analytical properties of the solution are given. Then, the approach involves implementing a finite difference scheme on the piece-wise uniform mesh (Shishkin type mesh). It integrates a composite trapezoidal formula for the integral component and utilizes interpolating quadrature rules and linear exponential basis functions for the differential part. The analysis of the method demonstrates that both the numerical scheme and its convergence rate exhibit second-order accuracy, ensuring uniform convergence with respect to the small parameter in the discrete maximum norm. Finally, two test examples are given.

Downloads

References

G. M. Amiraliyev, M. E. Durmaz and M. Kudu, Fitted second order numerical method for a singularly perturbed Fredholm integro-differential equation, Bulletin of the Belgian Mathematical Society Simon Stevin 27(1) (2020), 71 – 88, DOI: 10.36045/bbms/1590199305.

M. Cakir and B. Gunes, A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh, Hacettepe Journal of Mathematics and Statistics 51(3) (2022), 787 – 799, DOI: 10.15672/hujms.950075.

M. Cakir and G. Amiraliyev, A numerical method for a singularly perturbed three-point boundary value problem, Journal of Applied Mathematics 2010 (2010), 495184, DOI: 10.1155/2010/495184.

E. Cimen and G. M. Amiraliyev, Convergence analysis of approximate method for a singularly perturbed differential-difference problem, Journal of Mathematical Analysis 10(3) (2019), 23 – 37, URL: http://www.ilirias.com/jma/repository/docs/JMA10-3-3.pdf.

M. E. Durmaz, A numerical approach for singularly perturbed reaction diffusion type Volterra-Fredholm integro-differential equations, Journal of Applied Mathematics and Computing 69 (2023), 3601 – 3624, DOI: 10.1007/s12190-023-01895-3.

M. E. Durmaz, I. Amirali and G. M. Amiraliyev, An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition, Journal of Applied Mathematics and Computing 69 (2023), 505 – 528, DOI: 10.1007/s12190-022-01757-4.

L. G. Harrison, Kinetic Theory of Living Pattern, Cambridge University Press, Cambridge, xx + 354 pages (1993), DOI: 10.1017/CBO9780511529726.

M. K. Kadalbajoo and V. Gupta, A brief survey on numerical methods for solving singularly perturbed problems, Applied Mathematics and Computation 217(8) (2010), 3641 – 3716, DOI: 10.1016/j.amc.2010.09.059.

K. Maleknejad, I. N. Khalilsaraye and M. Alizadeh, On the solution of the integro-differential equation with an integral boundary condition, Numerical Algorithms 65 (2014), 355 – 374, DOI: 10.1007/s11075-013-9709-8.

S. Matthews, E. O’Riordan and G. I. Shishkin, A numerical method for a system of singularly perturbed reaction–diffusion equations, Journal of Computational and Applied Mathematics 145(1) (2002), 151 – 166, DOI: 10.1016/S0377-0427(01)00541-6.

Z. Mei, Numerical Bifurcation Analysis for Reaction-Diffusion Equations, Springer, Heidelberg, xiv + 414 pages (2000), DOI: 10.1007/978-3-662-04177-2.

H. Meinhardt, Models of Biological Pattern Formation, Academic Press, London — Paris, (1982).

J. B. Munyakazi and K. C. Patidar, A new fitted operator finite difference method to solve systems of evolutionary reaction-diffusion equations, Quaestiones Mathematicae 38(1) (2015), 121 – 138, DOI: 10.2989/16073606.2014.981708.

J. D. Murray, Mathematical Biology, Springer Verlag, Heidelberg, xiv + 770 pages (1993), DOI: 10.1007/978-3-662-08542-4.

S. Nemati, Numerical solution of Volterra–Fredholm integral equations using Legendre collocation method, Journal of Computational and Applied Mathematics 278 (2015), 29 – 36, DOI: 10.1016/j.cam.2014.09.030.

A.-M. Wazwaz, Linear and Nonlinear Integral Equations: Methods and Applications, Springer Berlin, Heidelberg, xviii + 639 pages (2011), DOI: 10.1007/978-3-642-21449-3.

Downloads

Published

30-11-2024
CITATION

How to Cite

Gurman, F., & Cakir, M. (2024). A Second-Order Numerical Approximation for Volterra-Fredholm Integro-Differential Equations With Boundary Layer and an Integral Boundary Condition. Communications in Mathematics and Applications, 15(3), 1167–1180. https://doi.org/10.26713/cma.v15i3.2707

Issue

Section

Research Article