Connected Certified Domination in Graphs: Properties and Algorithmic Aspects

Authors

  • Azham ilyass Chandigarh University
  • Dr Naveen Mani CHANDIGARH UNIVERSITY

Abstract

A certified dominating set $D$ of a graph $\Gamma=(V_\Gamma,E_\Gamma)$ denoted by $\gamma_{cer}-$set, is the subset of $V_\Gamma$ such that $|N(u)\cap(V_\Gamma-D)|$ is either $0$ or $2$, $\forall u\in D$. A set $\mathcal{D}_c\subseteq V_\Gamma$ is called a connected certified dominating set
$(\gamma_{cer}^c-set)$ if $\mathcal{D}_c$ is $\gamma_{cer}-$set and $\Gamma[\mathcal{D}_c]$ is connected. Also, if $\mathcal{D}_c$ has no proper subset, then it is a smallest $\gamma_{cer}^c-$set, and the cardinality of the smallest $\gamma_{cer}^c-$set is called as connected certified domination number (CCDN) of the graph $\Gamma$ represented by $\gamma_{cer}^c(\Gamma)$. In this article we continue the study of connected certified domination. Herein, we classify graphs with larger values of CCDN and then we will study some properties of connected certified domination. Moreover, we will provide upper bounds and Nordhaus-Gaddum results for the CCDN. Additionally, we will prove that the connected certified domination problem is NP-complete for Star Convex Bipartite graphs, Comb Convex Bipartite graphs, and planar graphs.

Downloads

Download data is not yet available.

References

M. Aouchiche and P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete

Applied Mathematics 161 (2013), 466-546, doi:10.1016/j.dam.2011.12.018.

G. Chartrand and J. Mitchem, Graphical theorems of the Nordhaus-Gaddum

class, In Recent trends in graph theory, Springer, Berlin, Heidelberg (1971), 55-61,

doi:10.1007/BFb0059422.

E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total domination in graphs,

Networks 10(3) (1980), 211-219, doi:10.1002/net.3230100304.

M. Dettlaff, M. Lema´nska, J. Topp, R. Ziemann and P. Zyli´nski, Certified domina- ˙

tion, AKCE International Journal of Graphs and Combinatorics 17(1) (2020), 86-97,

doi:10.1016/j.akcej.2018.09.004.

M. Dettlaff, M. Lema´nska, M. Miotk, J. Topp, R. Ziemann and P. Zyli´nski, ˙

Graphs with equal domination and certified domination numbers arXiv preprint

arXiv:1710.02059 (2017), doi:10.48550/arXiv.1710.02059.

S. Erfang, D. Chuangyin and K. Liying, A note on Nordhaus-Gaddum inequalities for

domination, Discrete Applied Mathematics 136(1) (2004), 83-85, doi:10.1016/S0166-

X(03)00200-2.

Z. F¨uredi, A. V. Kostochka, R. Skrekovski, M. Stiebitz and D. B. West, Nordhaus- ˇ

Gaddum-type Theorems for decompositions into many parts, Journal of Graph Theory 50(4) (2005), 273-292, doi:10.1002/jgt.20113.

W. Goddard and M. A. Henning, Nordhaus-Gaddum bounds for independent

domination, Discrete Mathematics 268(1-3) (2003), 299-302. doi:10.1016/S0012-

X(03)00032-3.

W. Goddard, M. A. Henning and H. C. Swart, Some Nordhaus-Gaddum-type results,

Journal of Graph Theory 16(3) (1992), 221-231, doi:10.1002/jgt.3190160305.

J. H. Hattingh, E. Jonck, E. J. Joubert and A. R. Plummer, Nordhaus-Gaddum

results for restrained domination and total restrained domination in graphs, Discrete

Mathematics 308(7) (2008), 1080-1087, doi:10.1016/j.disc.2007.03.061.

M. A. Henning and A. Yeo, Nordhaus-Gaddum Bounds for Total Domination,

In Total Domination in Graphs, Springer, New York, NY (2013), 125-129,

doi:10.1007/978-1-4614-6525-6-15.

T. W. Haynes, Domination in graphs: volume 2: advanced topics. Routledge, (2017), DominationinGraphs:Volume2:

AdvancedTopics-1stEdition-Zuhair(routledge.com)

T. W. Haynes, S. T. Hedetniemi and M. A. Henning, (Eds.), Topics in domination

in graphs, Vol. 64, Cham: Springer, (2020), doi:10.1007/978-3-030-51117-3.

F. Harary and T. W. Haynes, Nordhaus-Gaddum inequalities for domination

in graphs, Discrete Mathematics 155(1-3) (1996), 99-105, doi:10.1016/0012-

X(94)00373-Q.

A. Ilyass and V. S. Goswami, Connected certified domination number of certain

graphs, Advances and Applications of Mathematical Sciences 21(11) (2022), 6545-

, MiliPublications(mililink.com).

V.S. Goswami, A. ILyass and K.K. Bhagwat, September. Certified domination number of some graphs, In AIP Conference Proceedings, AIP Publishing 2735(1) (2023),

doi:10.1063/5.0140648.

R. Khoeilar, H. Karami, M. Chellali, S. M. Sheikholeslami and L. Volkmann,

Nordhaus-Gaddum type results for connected and total domination, RAIROOperations Research 55 (2021), S853-S862, doi:10.1051/ro/2020025.

J. P. Kumar, S. Arumugam and H. Khandelwal, Algorithmic aspects of certified

domination in graphs, Communications in Combinatorics and Optimization 7(2)

(2022), 247-255, doi:10.22049/CCO.2021.27302.1226.

A. I. Lone and V. S. Goswami. ”Connected certified domination edge critical and

stable graphs.” Acta Universitatis Sapientiae, Informatica 15(1) (2023), 25-37,

doi:10.2478/ausi-2023-0003.

E. A. Nordhaus and J. W. Gaddum, On complementary graphs, The American Mathematical Monthly 63(3) (1956), 175-177, doi:10.2307/2306658.

C. Payan and N. H. Xuong, Domination-balanced graphs, Journal of Graph Theory

(1) (1982), 23-32, doi:10.1002/jgt.3190060104.

S. D. Raj and S. S. Kumari, Certified domination number in product of graphs, Turkish Journal of Computer and Mathematics Education (TURCOMAT) 11(3) (2020),

-1170, doi:10.17762/turcomat.v11i3.10298.

D. B. West, Introduction to graph theory, volume 2. Prentice hall Upper Saddle River

(2001), IntroductiontoGraphTheory(2ndedition)(illinois.edu).

R.M. Karp, Reducibility among combinatorial problems, Complexity of Computer

Computations, Springer, 1972, pp. 85–103, doi:https://doi.org/10.1007/978-3-540-

-0 8.

M.E. Dyer and A.M. Frieze, Planar 3DM is NP-complete, Journal of Algorithms 73

(1986), 174-184, doi:https://doi.org/10.1016/0196-6774(86)90002-7

Published

14-11-2024

How to Cite

Lone, A. . I., & Naveen Mani. (2024). Connected Certified Domination in Graphs: Properties and Algorithmic Aspects. Communications in Mathematics and Applications, 15(2). Retrieved from http://rgnpublications.com/journals/index.php/cma/article/view/2630

Issue

Section

Research Article