Roman Domination in the Shadow Distance Graphs

Authors

DOI:

https://doi.org/10.26713/cma.v14i4.2588

Keywords:

Roman dominating function, Roman domination number, Shadow graph, Shadow distance graph

Abstract

A function \(\psi: \mathcal{V} \rightarrow \{0,1,2\}\) satisfying the requirement that each vertex \(x\) for which \(\psi(x)=0\) is adjacent to at least one vertex \(y\) for which \(\psi(y)=2\) is known as a Roman dominating function (Rdf) on a graph. A Rdf's weight is represented by the value \(\psi(y)= \sum_{x\in \mathcal{V}} \psi(x)\). The Roman domination number (Rdn) of a graph \(\mathcal{G}\) is the minimal weight of a Rdf on that graph. In this article, we establish Rdn for the shadow distance graph of the path, cycle, and star graphs with predetermined distance sets.

Downloads

Download data is not yet available.

References

H. A. Ahangar, A. Bahremandpour, S. M. Sheikholeslami, N. D. Soner, Z. Tahmasbzadehbaee and L. Volkmann, Maximal Roman domination numbers in graphs, Utilitas Mathematica 103 (2017), 245 – 258.

H. A. Ahangar, T. W. Haynes and J. C. Valenzuela-Tripodoro, Mixed Roman domination in graphs, Bulletin of the Malaysian Mathematical Sciences Society 40 (2017), 1443 – 1454, DOI: 10.1007/s40840-015-0141-1.

R. A. Beeler, T. W. Haynes and S. T. Hedetniemi, Double Roman domination, Discrete Applied Mathematics 211 (2016), 23 – 29, DOI: 10.1016/j.dam.2016.03.017.

M. Chellali, T. W. Haynes, S. T. Hedetniemi and A. A. McRae, Roman {2}-domination, Discrete Applied Mathematics 204 (2016), 22 – 28, DOI: 10.1016/j.dam.2015.11.013.

E. J. Cockayne, P. A. Dreyer Jr., S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs, Discrete Mathematics 278(1-3) (2004), 11 – 12, DOI: 10.1016/j.disc.2003.06.004.

M. A. Henning and S. T. Hedetniemi, Defending the Roman empire — A new strategy, Discrete Mathematics 266(1-3) (2003), 239 – 251, DOI: 10.1016/S0012-365X(02)00811-7.

U. V. Kumar and R. Murali, Edge domination in shadow distance graphs, International Journal of Mathematics and its Applications 4(2D) (2016), 125 – 130, URL: http://ijmaa.in/index.php/ijmaa/article/view/1075/1059.

U. V. Kumar and R. Murali, s-Path domination in shadow distance graphs, Journal of Harmonized Research in Applied Sciences 6(3) (2018), 194 – 199.

A. Mekala, U. V. C. Kumar and R. Murali, Bi-domination in brick product graphs, Journal of lgebraic Statistics 13(2) (2022), 1954 – 1960, URL: https://publishoa.com/index.php/journal/article/view/376/347.

C. S. ReVelle and K. E. Rosing, Defendens imperium Romanum: A classical problem in military strategy, The American Mathematical Monthly 107(7) (2000), 585 – 595, DOI: 10.1080/00029890.2000.12005243.

I. Stewart, Defend the Roman empire!, Scientific American 281(6) (1999), 136 – 138, URL: https: //www.jstor.org/stable/26058532.

Downloads

Published

25-12-2023
CITATION

How to Cite

Kallesh, K., Kumar, . U. V. C., & Murali, R. (2023). Roman Domination in the Shadow Distance Graphs. Communications in Mathematics and Applications, 14(4), 1463–1468. https://doi.org/10.26713/cma.v14i4.2588

Issue

Section

Research Article