Independent Domination Degree of Standard Graphs of Adriatic (a,b)-KA Indices

Authors

DOI:

https://doi.org/10.26713/cma.v14i4.2579

Keywords:

Topological index, Adriatic (a,b)-KA index, Independent degree domination, Independent minimal dominating number

Abstract

The dominating set D of the graph K=(V,E) is the independent dominating set (Ids), the independent domination number i(K) of the graph K is the minimum cardinality of id. In this article, we introduce the new independent degree domination (idd) of each vertices sV(K), denoted by did(s) and compute the Adriatic (a,b)-KA index for book graphs, cycle middle graphs and windmill graphs.

Downloads

References

M. O. Albertson, The irregularity of a graph, Ars Combinatoria 46 (1997), 219 – 225.

A. Alwardi, A. Alqesmah, R. Rangarajan and I. N. Cangul, Entire Zagreb indices of graphs, Discrete Mathematics, Algorithms and Applications 10(3) (2018), 1850037, DOI: 10.1142/S1793830918500374.

M. Atapour, A. Jahanbani and R. Khoeilar, New bounds for the Randic index of graphs, Journal of Mathematics 2021 (2021), Article ID 9938406, 8 pages, DOI: 10.1155/2021/9938406.

F. V. Fomin, F. Grandoni, A. V. Pyatkin and A. A. Stepanov, On maximum number of minimal dominating sets in graphs, Electronic Notes in Discrete Mathematics 22 (2005), 157 – 162, DOI: 10.1016/j.endm.2005.06.028.

W. Goddard and M. A. Henning, Independent domination in graphs: A survey and recent results, Discrete Mathematics 313(7) (2013), 839 – 854, DOI: 10.1016/j.disc.2012.11.031.

I. Gutman, M. Togan, A. Yurttas, A. S. Cevik and I. N. Cangul, Inverse problem of sigma index, MATCH Communications in Mathematical and in Computer Chemistry 79 (2018), 491 – 508, URL: https://match.pmf.kg.ac.rs/electronic_versions/Match79/n2/match79n2_491-508.pdf.

T. W. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs, 1st edition, CRC Press, Boca Raton, 464 pages (1998), DOI: 10.1201/9781482246582.

A. Jahanbani and H. Shooshtary, Nano-Zagreb index and multiplicative nano-zagreb index of some graph operations, International Journal of Computing Science and Applied Mathematics 5(1) (2019), 15 – 22, DOI: 10.12962/j24775401.v5i1.4659.

V. R. Kulli, Minus F and square F-indices and their polynomials of certain dendrimers, Earthline Journal of Mathematical Sciences 1(2) (2019), 172 – 185, DOI: 10.34198/ejms.1219.171185.

V. R. Kulli, B. Chaluvaraju and T. Vidya, Computation of adriatic (a,b)-KA index of some nanostructues, International Journal of Mathematics Trends and Technology 67(4) (2021), 79 – 87, DOI: 10.14445/22315373/IJMTT-V67I4P511.

V. Lokesha, K. Z. Yasmeen, B. Chaluvaraju and T. Deepika, Computation of misbalance type degree indices of certain classes of derived graph, International Journal of Mathematical Combinatorics 3 (2019), 61 – 69, URL: https://fs.unm.edu/IJMC/IJMC-3-2019.pdf.

T. Réti, R. Sharfdini, Á. D. Kiss and H. Hagobin, Graph irregularity indices used as molecular Descriptors in QSPR studies, MATCH Communications in Mathematical and in Computer Chemistry 79 (2018), 509 – 524, URL: https://match.pmf.kg.ac.rs/electronic_versions/Match79/n2/match79n2_509-524.pdf.

M. L. Roden and P. J. Slater, Liar’s domination in graphs, Discrete Mathematics 309(19) (2009), 5884 – 5890, DOI: 10.1016/j.disc.2008.07.019.

D. Vukicevic and M. Gasperov, Bond additive modeling 1. Adriatic indices, Croatica Chemica Acta 83(3) (2010), 243 – 260, URL: https://hrcak.srce.hr/file/93215.

Downloads

Published

25-12-2023

How to Cite

Mekala, A., Kumar, U. V. C., & Murali, R. (2023). Independent Domination Degree of Standard Graphs of Adriatic (a,b)-KA Indices. Communications in Mathematics and Applications, 14(4), 1421–1428. https://doi.org/10.26713/cma.v14i4.2579

Issue

Section

Research Article