Linear Study of Ferromagnetic Convection in Nanofluids Under the Effect of Variable Viscosity

Authors

DOI:

https://doi.org/10.26713/cma.v14i4.2575

Keywords:

Convection, Ferromagnetic nanoliquid, Variable viscosity, Lorenz model

Abstract

Rayleigh-Bénard ferroconvective problem is considered in a Newtonian nanofluid with Fe\({}_{3}\)O\({}_{4}\)-magnetite, as a nanoparticle dispersed in the medium, under the effect of variable viscosity.\ Employing double fourier series, we arrive at the system of differential equations well known as generalized Lorenz Model both in linear and non-linear forms. In the current paper, linear stabillity analysis is considered and graphs have been plotted for stationary nanofluid Rayleigh number \((R_{\mathit{nfs}})\) versus variable viscosity and wavenumber for variant values of buoyancy, non-buoyancy magnetization parameters (BMP and NBMP, respectively) and variable viscosity, and the same has been discussed in detail.

Downloads

Download data is not yet available.

References

S. Agarwal and B. S. Bhadauria, Convective heat transport by longitudinal rolls in dilute nanoliquids, Journal of Nanofluids 3(4) (2014), 380– 390, DOI: 10.1166/jon.2014.1110.

E. Md. M. Alam, S. Huq, Md. S. Uddin and M. M. Rahman, Effect of sinusoidal thermal boundary condition on unsteady magnetohydrodynamics convection in a square enclosure filled with Fe3O4-water ferrofluid, International Journal of Statistics and Applied Mathematics 4(6) (2019), 111– 127, URL: http://www.mathsjournal.com/pdf/2019/vol4issue6/PartB/4-6-4-854.pdf.

G. K. Auernhammer and H. R. Brand, Thermal convection in a rotating layer of a magnetic fluid, The European Physical Journal B– Condensed Matter and Complex Systems 16 (2000), 157– 168, DOI: 10.1007/s100510070261.

H. C. Brinkman, The viscosity of concentrated suspensions and solutions, The Journal of Chemical Physics 20 (1952), 571– 571, DOI: 10.1063/1.1700493.

J. Buongiorno, Convective transport in nanofluids, ASME Journal of Heat and Mass Transfer 128(3) (2006), 240– 250, DOI: 10.1115/1.2150834.

A. J. Chamkha, S. K. Jena and S. K. Mahapatra, MHD convection of nanofluids: A review, Journal of Nanofluids 4(3) (2015), 271– 292, DOI: 10.1166/jon.2015.1166.

B. A. Finlayson, Convective instability of ferromagnetic fluids, Journal of Fluid Mechanics 40(4) (1970), 753– 767, DOI: 10.1017/S0022112070000423.

K. Gotoh and M. Yamada, Thermal convection in a horizontal layer of magnetic fluids, Journal of the Physical Society of Japan 51(9) (1982), 3042– 3048, DOI: 10.1143/JPSJ.51.3042.

R. L. Hamilton and O. K. Crosser, Thermal conductivity of heterogeneous two-component systems, Industrial and Engineering Chemistry Fundamentals 1 (1962), 187– 191, DOI: 10.1021/i160003a005.

P. N. Kaloni and J. X. Lou, Convective instability of magnetic fluids, Physical Review E 70 (2004), 026313, DOI: 10.1103/PhysRevE.70.026313.

J. Kim, Y. T. Kang and C. K. Choi, Analysis of convective instability and heat transfer characteristics of nanofluids, Physics of Fluids 16 (2004), 2395– 2401, DOI: 10.1063/1.1739247.

M. T. Krauzina, A. A. Bozhko, G. F. Putin and S. A. Suslov, Intermittent flow regimes near the convection threshold in ferromagnetic nanofluids, Physical Review E 51 (2015), 013010, DOI: 10.1103/PhysRevE.91.013010.

D. Laroze, P. G. Siddheshwar and H. Pleiner, Chaotic convection in a ferrofluid, Communications in Nonlinear Science and Numerical Simulation 18(9) (2013), 2436– 2447, DOI: 10.1016/j.cnsns.2013.01.016.

S. Maruthamanikandan, Instabilities in Ferromagnetic, Dielectric and Other Complex Liquids, PhD Thesis, Bangalore University, India (2005), URL: https://people.bath.ac.uk/ensdasr/PAPERS/Ph.D.%20Thesis%20-%20Mani.pdf.

S. Odenbach, Microgravity experiments on thermomagnetic convection in magnetic fluids, Journal of Magnetism and Magnetic Materials 149(1-2) (1995), 155– 157, DOI: 10.1016/0304-8853(95)00360-6.

H. F. Oztop and E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, International Journal of Heat and Fluid Flow 29(5) (2008), 1326–1336, DOI: 10.1016/j.ijheatfluidflow.2008.04.009.

N. Putra, W. Roetzel and S. K. Das, Natural convection of nano-fluids, Heat Mass Transfer 39 (2003), 775– 784, DOI: 10.1007/s00231-002-0382-z.

M. Sheikholeslami and A. J. Chamkha, Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field, Numerical Heat Transfer, Part A: Applications 69(10) (2016), 1186– 1200, DOI: 10.1080/10407782.2015.1125709.

M. Sheikholeslami, Influence of coulomb forces on Fe3O4–H2O nanofluid thermal improvement, International Journal of Hydrogen Energy 42(2) (2017), 821– 829, DOI: 10.1016/j.ijhydene.2016.09.185.

I. S. Shivakumara, N. Rudraiah and C. E. Nanjundappa, Effect of non-uniform basic temperature gradient on Rayleigh–Benard–Marangoni convection in ferrofluids, Journal of Magnetism and Magnetic Materials 248(3) (2002), 379– 395, DOI: 10.1016/S0304-8853(02)00151-8.

P. G. Siddheshwar and A. Abraham, Effect of time-periodic boundary temperatures/body force on Rayleigh–Benard convection in a ferromagnetic fluid, Acta Mechanica 161 (2003), 131– 150, DOI: 10.1007/s00707-002-1004-z.

P. G. Siddheshwar and N. Meenakshi, Amplitude equation and heat transport for Rayleigh–Bénard convection in newtonian liquids with nanoparticles, International Journal of Applied and Computational Mathematics 3 (2017), 271– 292, DOI: 10.1007/s40819-015-0106-y.

P. G. Siddheshwar, C. Kanchana, Y. Kakimoto and A. Nakayama, Steady finite-amplitude Rayleigh–Bénard convection in nanoliquids using a two-phase model: Theoretical answer to the phenomenon of enhanced heat transfer, ASME Journal of Heat and Mass Transfer 139(1) (2017), 012402, DOI: 10.1115/1.4034484.

P. J. Stiles and M. Kagan, Thermoconvective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field, Journal of Magnetism and Magnetic Materials 85(1-3) (1990), 196– 198, DOI: 10.1016/0304-8853(90)90050-Z.

D. Y. Tzou, Instability of nanofluids in natural convection, ASME Journal of Heat and Mass Transfer 130(7) (2008), 072401, DOI: 10.1115/1.2908427.

D. Y. Tzou, Thermal instability of nanofluids in natural convection, International Journal of Heat and Mass Transfer 51(11-12) (2008), 2967– 2979, DOI: 10.1016/j.ijheatmasstransfer.2007.09.014.

H. Yamaguchi, I. Kobori, Y. Uehata and K. Shimada, Natural convection of magnetic fluid in a rectangular box, Journal of Magnetism and Magnetic Materials 201(1-3) (1999), 264– 267, DOI: 10.1016/S0304-8853(99)00022-0.

Downloads

Published

25-12-2023
CITATION

How to Cite

Rajashree, S., & Chandrashekara, N. P. (2023). Linear Study of Ferromagnetic Convection in Nanofluids Under the Effect of Variable Viscosity. Communications in Mathematics and Applications, 14(4), 1385–1394. https://doi.org/10.26713/cma.v14i4.2575

Issue

Section

Research Article