M-Polynomials and Degree-Based Topological Indices of Mycielskian of Paths and Cycles

Authors

DOI:

https://doi.org/10.26713/cma.v14i4.2574

Keywords:

Topological indices, M-polynomial, Mycielskian of a graph, Path, Cycle

Abstract

For a graph $G$, the M-polynomial is defined as \(M(G;x,y)= \sum_{\delta \leq \alpha \leq \beta \leq \Delta}m_{\alpha \beta}(G)x^{\alpha}y^{\beta}\), where \(m_{\alpha \beta} (\alpha, \beta \geq 1)\), is the number of edges \(ab\) of \(G\) such that \(\deg_{G}(a)=\alpha\) and \(\deg_{G}(b)=\beta\), and \(\delta\) is the minimum degree and \(\Delta\) is the maximum degree of \(G\). The physiochemical properties of chemical graphs are found by topological indices, in particular, the degree-based topological indices, which can be determined from an algebraic formula called M-polynomial.\ We compute the closest forms of M-polynomial for Mycielskian of paths and cycles. Further, we plot the 3-D graphical representation of M-polynomial.\ Finally, we derive some degree-based topological indices with the help of M-polynomial.

Downloads

Download data is not yet available.

References

F. M. Brückler, T. Došlic, A. Graovac and I. Gutman, On a class of distance-based molecular structure descriptors, Chemical Physics Letters 503(4-6) (2011), 336 – 338, DOI: 10.1016/J.Cplett.2011.01.033.

K. Ch. Das and N. Trinajstic, Comparison between first geometric-arithmetic index and atom-bond connectivity index, Chemical Physics Letters 497(1-3) (2010), 149 – 151, DOI: 10.1016/j.cplett.2010.07.097.

E. Deutsch and S. Klavžar, M-polynomial and degree-based topological indices, Iranian Journal of Mathematical Chemistry 6(2) (2015), 93 – 102, DOI: 10.22052/IJMC.2015.10106.

G. Fath-Tabar, B. Furtula and I. Gutman, A new geometric-arithmetic index, Journal of Mathematical Chemistry 47 (2010), 477 – 486, DOI: 10.1007/s10910-009-9584-79.

F. Harary, Graph Theory, Addison-Wesley Publishing Company, New York (1969).

H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bulletin of the Chemical Society of Japan 44(9) (1971), 2332 – 2339, DOI: 10.1246/bcsj.44.2332.

A. J. M. Khalaf, S. Hussain, D. Afzal, F. Afzal and A. Maqbool, M-Polynomial and topological indices of book graph, Journal of Discrete Mathematical Sciences and Cryptography 23(6) (2020), 1217 – 1237, DOI: 10.1080/09720529.2020.1809115.

Y. C. Kwun, M. Munir, W. Nazeer, S. Rafique and S. M. Kang, M-Polynomials and topological indices of V-Phenylenic nanotubes and nanotori, Scientific Reports 7 (2017), Article number: 8756, DOI: 10.1038/s41598-017-08309-y.

W. Lin, J. Wu, P. C. B. Lam and G. Gu, Several parameters of generalized Mycielskians, Discrete Applied Mathematics 154(8) (2006), 1173 – 1182, DOI: 10.1016/j.dam.2005.11.001.

M. Munir, W. Nazeer, A. R. Nizami, S. Rafique and S. M. Kang, M-polynomials and topological indices of titania nanotubes, Symmetry 8(11) (2016), 117, DOI: 10.3390/sym8110117.

M. Munir, W. Nazeer, S. Rafique and S. M. Kang, M-Polynomial and degree-based topological indices of polyhex nanotubes, Symmetry 8(12) (2016), 149, DOI: 10.3390/sym8120149.

N. N. Swamy, C. K. Gangappa, P. Poojary, B. Sooryanarayana and N. H. Mudalagiraiah, Topological indices of the subdivision graphs of the nanostructure TUC4C8(R) using M-polynomials, Journal of Discrete Mathematical Sciences and Cryptography 25(1) (2022), 265 – 282, DOI: 10.1080/09720529.2022.2027604.

H. Wiener, Structural determination of the paraffin boiling points, Journal of the American Chemical Society 69 (1947), 17 – 20, DOI: 10.1021/ja01193a005.

Downloads

Published

25-12-2023
CITATION

How to Cite

Shilpa, H. C., Gayathri, K., Nagesh, . H. M., & Narahari, N. (2023). M-Polynomials and Degree-Based Topological Indices of Mycielskian of Paths and Cycles. Communications in Mathematics and Applications, 14(4), 1375–1383. https://doi.org/10.26713/cma.v14i4.2574

Issue

Section

Research Article