An Approach to Estimate the Parameters of Aiba-Edward Growth Model Using the Growth of Escherichia Coli

Authors

DOI:

https://doi.org/10.26713/cma.v14i4.2573

Keywords:

Microbial growth, Parameter estimation, Growth model, Inhibition

Abstract

In microbial growth kinetics mathematical models are used to correlate the growth rate to the concentration of the limiting substrate with the parameters. Aiba-Edward model is one of the widely used models to describe microbial growth kinetics. In this study, four new methods are introduced to estimate the model’s parameter using a standard bacterial growth data of Escherichia Coli. The performance of the introduced methods are analyzed by using a standard selection criterion. In this study, it has been observed that the newly introduced methods are performed well and estimated parameters are biologically significant.

Downloads

Download data is not yet available.

References

S. Aiba, M. Shoda and M. Nagatani, Kinetics of product inhibition in alcohol fermentation, Biotechnology and Bioengineering 10(6) (1968), 845 – 864, DOI: 10.1002/bit.260100610.

F. F. Blackman, Optima and limiting factors, Annals of Botany 19(74) (1905), 281 – 295, URL: https://www.jstor.org/stable/43235278.

M. Borah and D. J. Mahanta, Rapid parameter estimation of three parameter non-linear growth models, International Journal of Mathematical Archive 4(2) (2013), 274 – 282, URL: http://www.ijma.info/index.php/ijma/article/view/1941/1157.

S. Dey and S. Mukherjee, Performance and kinetic evaluation of phenol biodegradation by mixed microbial culture in a batch reactor, International Journal of Water Resources and Environmental Engineering 2(3) (2010), 40 – 49, DOI: 10.5897/IJWREE.9000043.

K. Dutta, V. V. Dasu, B. Mahanty and A. A. Prabhua, Substrate inhibition growth kinetics for cutinase producing pseudomonas cepacia using tomato-peel extracted cutin, Chemical and Biochemical Engineering Quarterly 29(3) (2015), 437 – 445, DOI: 10.15255/CABEQ.2014.202.

P. Edmonds, Microbiology: An Environmental Perspective, Macmillan, 367 pages (1978).

S. M. T. Gharibzahedi, S. H. Razavi and M. Mousavia, Kinetic analysis and mathematical modeling of cell growth and canthaxanthin biosynthesis by Dietzia natronolimnaea HS-1 on waste molasses hydrolysate, RSC Advances 3(45) (2013), 23495 – 23502, DOI: 10.1039/C3RA44663H.

S. Ibrahim, M. Y. Shukor, M. A. Syed, W. L. W. Johari and S. A. Ahmad, Characterisation and growth kinetics studies of caffeine-degrading bacterium Leifsonia sp. strain SIU, Annals of Microbiology 66 (2016), 289 – 298, DOI: 10.1007/s13213-015-1108-z.

D. L. Kirchman, Processes in Microbial Ecology, 2nd edition (online), Oxford Academic (2018), DOI: 10.1093/oso/9780198789406.001.0001.

J. D. Kong, Modeling Microbial Dynamics: Effects on Environmental and Human Health, Thesis, University of Alberta, Canada (2017), DOI: 10.7939/R3FT8DZ73.

J. Krishnan, A. A. Kishore, A. Suresh, A. K. Murali and J. Vasudevan, Biodegrdation kinectics of azo dye mixture: substrate inhibition modeling, Research Journal of Pharmaceutical, Biological and Chemical Sciences 8(3S) (2017), 365 – 375, URL: https://www.rjpbcs.com/pdf/2017_8(3S)/[42].pdf.

D. J. Mahanta, M. Bora and P. Saikia, A study on kinetic models for analysing the bacterial growth rate, American International Journal of Research in Science, Technology, Engineering and Mathematics 8(1) (2014), 68 – 72, URL: http://iasir.net/AIJRSTEMpapers/AIJRSTEM14-724.pdf.

L. Michaelis and M. L. Menten, Die Kinetik Der Invertinwirkung, Biochemistry 49(2) (1913), 333 – 369. (in German)

J. Monod, The growth of bacterial cultures, Annual Reviews in Microbiology 3 (1949), 371 – 394, DOI: 10.1146/annurev.mi.03.100149.002103.

M. Muloiwa, S. Nyende-Byakika and M. Dinka, Comparison of unstructured kinetic bacterial growth models, South African Journal of Chemical Engineering 33 (2020), 141 – 150, DOI: 10.1016/j.sajce.2020.07.006.

S. Sadhukhan, R. Villa and U. Sarkar, Microbial production of succinic acid using crude and purified glycerol from a Crotalaria juncea based biorefinery, Biotechnology Reports 10 (2016), 84 – 93, DOI: 10.1016/j.btre.2016.03.008.

K. L. Schulze and R. S. Lipe, Relationship between substrate concentration, growth rate, and respiration rate of Escherichia coli in continuous culture, Archiv für Mikrobiologie 48 (1964), 1 – 20, DOI: 10.1007/BF00406595.

G. Teissier, Growth of bacterial populations and the available substrate concentration, Review of Scientific Instruments 3208 (1942), 209 – 214.

Downloads

Published

25-12-2023
CITATION

How to Cite

Gogoi, U. N., Saikia, P., & Mahanta, D. J. (2023). An Approach to Estimate the Parameters of Aiba-Edward Growth Model Using the Growth of Escherichia Coli. Communications in Mathematics and Applications, 14(4), 1367–1374. https://doi.org/10.26713/cma.v14i4.2573

Issue

Section

Research Article