Effect of Micropolar Fluid Flow on Unsteady Convective Diffusive Mass Transfer in Doubly Connected Region

Authors

DOI:

https://doi.org/10.26713/cma.v14i4.2571

Keywords:

Micropolar fluid, Dispersion, Catheterized artery, Species transport equation, Concentric cylinders

Abstract

Solute transfer in a micropolar fluid flowing between two concentric cylindrical tubes is considered. The governing equations are solved analytically for velocity. The species transport equation is solved by using a long-time approach following Sankara Subramanian and Gill model to obtain mean concentration and coefficients of dispersion. The results are analysed with respect to a catheterized artery for the parameter values available in the literature. The effects of micro-rotation, reaction rate, and inner tube radius on the diffusive, convective, and dispersion coefficients are analysed by graphically depicting the numerical results.

Downloads

References

R. Aris, On the dispersion of a solute in a fluid flowing through a tube, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 235(1200) (1956), 67 – 77, DOI: 10.1098/rspa.1956.0065.

S. Debnath, A. K. Saha, B. S. Mazumder and A. K. Roy, Dispersion phenomena of reactive solute in a pulsatile flow of three-layer liquids, Physics of Fluids 29 (2017), 097107, DOI: 10.1063/1.5001962.

T. Hayat and N. Ali, Effects of an endoscope on peristaltic flow of a micropolar fluid, Mathematical and Computer Modelling 48(5-6) (2008), 721 – 733, DOI: 10.1016/j.mcm.2007.11.004.

W. Q. Jiang and G. Q. Chen, Solution of Gill’s generalized dispersion model: Solute transport in Poiseuille flow with wall absorption, International Journal of Heat and Mass Transfer 127(B) (2018), 34 – 43, DOI: 10.1016/j.ijheatmasstransfer.2018.07.003.

K. Madhura, R. Indira, S. P. Suma and S. Jagadeesha, An analytical study of mass transfer in doubly connected region, Global Journal of Pure and Applied Mathematics 14(11) (2018), 1479 – 1487, URL: https://www.ripublication.com/gjpam18/gjpamv14n11_05.pdf.

D. K. Maurya, S. Deo and D. Y. Khanukaeva, Analysis of Stokes flow of micropolar fluid through a porous cylinder, Mathematical Methods in the Applied Sciences 44(8) (2021), 6647 – 6665, DOI: 10.1002/mma.7214.

P. Nagarani, G. Sarojamma and G. Jayaraman, Effect of boundary absorption on dispersion in Casson fluid flow in an annulus: application to catheterized artery, Acta Mechanica 202 (2009), 47 – 63, DOI: 10.1007/s00707-008-0013-y.

T. J. Pedley and R. D. Kamm, The effect of secondary motion on axial transport in oscillatory tube flow, Journal of Fluid Mechanics 193 (1988), 347 – 367, DOI: 10.1017/S0022112088002174.

B. Ramana and G. Sarojamma, Unsteady convective diffusion in a Herschel-Bulkley fluid in a conduit with interphase mass transfer, International Journal of Mathematical Modelling & Computations 2(3) (2012), 159 – 179, URL: https://ijm2c.ctb.iau.ir/article_521797.html.

J. Rana and P. V. S. N. Murthy, Unsteady solute dispersion in non-Newtonian fluid flow in a tube with wall absorption, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 472(193) (2016), 20160294, DOI: 10.1098/rspa.2016.0294.

A. R. Rao and K. S. Deshikachar, An exact analysis of unsteady convective diffusion in an annular pipe, Journal of Applied Mathematics and Mechanics 67(3) (1987), 189 – 195, DOI: 10.1002/zamm.19870670315.

R. Sankarasubramanian and W. N. Gill, Taylor diffusion in laminar flow in an eccentric annulus, International Journal of Heat and Mass Transfer 14(7) (1971), 905 – 919, DOI: 10.1016/0017-9310(71)90117-7.

R. Sankarasubramanian and W. N. Gill, Unsteady convective diffusion with interphase mass transfer, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 333(1592) (1973), 115 – 132, DOI: 10.1098/rspa.1973.0051.

A. Sarkar and G. Jayaraman, Nonlinear analysis of oscillatory flow in the annulus of an elastic tube: Application to catheterized artery, Physics of Fluids 13 (2001), 2901 – 2912, DOI: 10.1063/1.1389285.

A. Sarkar and G. Jayaraman, The effect of wall absorption on dispersion in annular flows, Acta Mechanica 158 (2002), 105 – 119, DOI: 10.1007/BF01463173.

G. I. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 219(1137) (1953), 186 – 203, DOI: 10.1098/rspa.1953.0139.

A. Tiwari and S. Deo, Pulsatile flow in a cylindrical tube with porous walls: applications to blood flow, Journal Porous Media 16(4) (2013), 335 – 340, DOI: 10.1615/JPorMedia.v16.i4.50.

B. Umadevi, P. A. Dinesh, R. R. Indira and C. V. Deo, The effect of particle drag and wall absorption on mass transfer in concentric annulus flows, Mapana Journal of Sciences 10(1) (2011), 1 – 13, DOI: 10.12723/mjs.18.1.

K. V. Venkataswamy, S. Jagadeesha and R. Indira, An analytical study of dispersion and wall absorption with effect of viscoelasticity and magnetic field, Journal of Informatics and Mathematical Sciences 11(3-4) (2019), 433 – 439, DOI: 10.26713/jims.v11i3-4.1347.

Downloads

Published

25-12-2023
CITATION

How to Cite

Ramarao, I., Jagadeesha, . S., Rashmi, K. R., & Sreegowrav, K. R. (2023). Effect of Micropolar Fluid Flow on Unsteady Convective Diffusive Mass Transfer in Doubly Connected Region. Communications in Mathematics and Applications, 14(4), 1341–1353. https://doi.org/10.26713/cma.v14i4.2571

Issue

Section

Research Article