A New Fixed Point Theorem for Generalized \((\alpha, \psi)\)-Contraction Mapping of Quadratic Type With Applications

Authors

DOI:

https://doi.org/10.26713/cma.v15i1.2557

Keywords:

Fixed point, \((\alpha, \psi)\)-contraction, \(b\)-metric space

Abstract

In this paper, we acquaint generalized \((\alpha,\psi)\)-contraction mappings of quadratic type and establish common fixed point results in the setting of rectangular quasi \(b\)-metric spaces. Our results extend and generalize related fixed point results of Karapinar and Lakzian \((\alpha-\psi)\)-Contractive mappings on generalized quasi metric spaces, Journal of Function Spaces  2014 (2014), 914398, 7 pages), Alharbi et al.~(\(\alpha\)-Contractive mappings on rectangular \(b\)-metric spaces and an application to integral equations, Journal of Mathematical Analysis 9(3) (2018), 47 - 60), and Khuangsatung et al. (The rectangular quasi-metric space and common fixed point theorem for \(\psi\)-contraction and \(\psi\)-Kannan mappings, Thai Journal of Mathematics (Special Issue (2020): Annual Meeting in Mathematics 2019), (2020), 89 - 101). We applied our result to facilitate the existence of a solution to an integral equation.

Downloads

Download data is not yet available.

References

M. Abbas, B.T. Leyew and S.H. Khan, A new Φ-generalized quasi metric space with some fixed point results and applications, Filomat, 31(11) (2017), 3157 – 172, DOI: 10.2298/FIL1711157A.

A. Abodayeh, W. Shatanawi and D. Turkoglu, Some fixed point theorems in quasi-metric spaces under quasi weak contraction, Global Journal of Pure and Applied Mathematics, 12 (2016), 4771 – 4780.

N. Alharbi, H. Aydi, A. Felhi, C. Özel and S. Sahmim, α-Contractive mappings on rectangular b-metric spaces and an application to integral equations, Journal of Mathematical Analysis, 9(3) (2018), 47–60, http://www.ilirias.com/jma/repository/docs/JMA9-3-5.pdf.

H. Aydi, E. Karapinar and B. Samet, Fixed points for generalized (α,ψ)-contractions on generalized metric spaces, Journal of Inequalities and Applications 2014 (2014), Article number: 229, DOI: 10.1186/1029-242X-2014-229.

H. Aydi, E. Karpinar and H. Lakzian, Fixed point results on a class of generalized metric spaces, Mathematical Sciences, 6 (2012), article number: 46, DOI: 10.1186/2251-7456-6-46.

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, 3 (1922), 133 – 181, URL: https://eudml.org/doc/213289.

M. Berzig, E. Karapinar and A.F. Roldán-López-de-Hierro, Some fixed point theorems in Branciari metric spaces, Mathematica Slovaca 67(5) (2017), 1189 – 1202, DOI: 10.1515/ms-2017-0042.

A.A. Branciari, A fixed point theorems of Banach-Caccioppoli type on a class of generalized metric spaces, Publicationes Mathematicae Debrecen 57(1-2) (2000), 31 – 37, URL: https://publi.math.unideb.hu/load_doc.php?p=617&t=pap.

V. Cvetkovi´c, E. Karpinar and V. Rakocevic, Some fixed point results on quasi-b-metric-like-spaces, Journal of Inequalities and Applications 2015 (2015), Article number: 374, DOI: 10.1186/s13660-015-0897-8.

S. Czerwik, Contraction mapping in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis 1(1) (1993), 5 – 11, URL: http://dml.cz/dmlcz/120469.

H.S. Ding, V. Ozturk and S. Radenovic, On some new fixed point results in b-metric spaces, Journal of Nonlinear Science and Applications 8(4) (2015), 378 – 386, DOI: 10.22436/jnsa.008.04.10.

R. George, S. Radenovi´c, K.P. Reshma and S. Shukla, Rectangular b-metric space and contraction principle, Journal of Nonlinear Science and Applications 8(6) (2015), 1005 – 1013, DOI: 10.22436/jnsa.008.06.11.

E. Karapinar, On (α,ψ) contractions of integral type on generalized metric spaces, In: Current Trends in Analysis and Its Application, V. Mityushev and M. Ruzhansky (editors), (2015), 843 – 854, Birkhäuser, Cham., DOI: 10.1007/978-3-319-12577-0_91.

E. Karapinar, S. Czerwik and H. Aydi, (α,ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces, Journal of Function Spaces 2018 (2018), 3264620, 4 pages, DOI: 10.1155/2018/3264620.

E. Karapinar and H. Lakzian, (α−ψ)-Contractive mappings on generalized quasi metric spaces, Journal of Function Spaces 2014 (2014), 914398, 7 pages, DOI: 10.1155/2014/914398.

W. Khuangsatung, S. Chan-Iam, P. Muangkarn and C. Suanoom, The rectangular quasi-metric space and common fixed point theorem for ψ-contraction and ψ-Kannan mappings, Thai Journal of Mathematics (Special Issue (2020): Annual Meeting in Mathematics 2019), (2020), 89 – 101, https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/958.

H. Lakzian and B. Samet, Fixed points for (ψ,φ)-weakly contractive mappings in generalized metric spaces, Applied Mathematics Letters 25(5) (2012), 902 – 906, DOI: 10.1016/j.aml.2011.10.047.

H. Lakzian, S. Barootkoob, N. Mlaiki, H. Aydi and M. De la Sen, On generalized (α,ψ,MΩ)- contraction with w-distances and an application to nonlinear Fredholm integral equations, Symmetry 11(8) (2019), 982, DOI: 10.3390/sym11080982.

I.-J. Lin, C.M. Chen and E. Karapinar, Periodic points of weaker Meir-Keeler contractive mappings on generalized quasimetric spaces, Abstract and Applied Analysis 2014 (2014), Article ID 490450, 6 pages, DOI: 10.1155/2014/490450.

H.K. Nashine and H. Lakzian, Periodic points of weaker Meir-Keeler function in complete generalized metric spaces, Filomat 30(8) (2016), 2191 – 2206, DOI: 10.2298/FIL1608191N.

V. Ozturk, Fixed point theorems in b-rectangular metric spaces, Universal Journal of Mathematics and Applications 3(1) (2020), 28 – 32, DOI: 10.32323/ujma.609715.

B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications 75(4) (2012), 2154 – 2165, DOI: 10.1016/j.na.2011.10.014.

M.H. Shah and N. Hussain, Nonlinear contractions in partially ordered quasi b-metric spaces, Communications of the Korean Mathematical Society 27(1) (2012), 117 – 128, DOI: 10.4134/CKMS.2012.27.1.117.

Downloads

Published

24-04-2024
CITATION

How to Cite

Tiwari, R., & Sharma, N. (2024). A New Fixed Point Theorem for Generalized \((\alpha, \psi)\)-Contraction Mapping of Quadratic Type With Applications. Communications in Mathematics and Applications, 15(1), 445–461. https://doi.org/10.26713/cma.v15i1.2557

Issue

Section

Research Article