Pseudosymmetric Almost α-Cosymplectic (κ,μ,ν)-Spaces Admitting Einstein Solitons

Authors

  • Tuğba Mert Sivas Cumhuriyet Universit
  • Mehmet Atçeken
  • Pakize Uygun

Keywords:

Almost α-Cosymplectic (κ,μ,ν)-Space, Einstein Soliton, Pseudosymmetric Manifold

Abstract

This paper attempts to characterize cases of an almost α-cosymplectic (κ,μ,ν)-space admitting Einstein sloitons to be concircular Ricci pseudosymmetry, projective Ricci pseudosymmetry, W₁-curvature and the W₂-curvature Ricci pseudo symmetric.

Downloads

Download data is not yet available.

References

: T. W. Kim and H. K. Pak. Canonical Foliations of Certain Classes of Almost Contact Metric Structures. Acta Mathematica Sinica, English Series, 2005, Vol:21, No:4,841-856.

: Ye Rugang, Global existence and convergence of Yamabe flow. J. Differential Geom.39 (1) (1994): 35-50.

: G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66-94.

: R. Hamilton. The Ricci flow on surfaces. Contemp. Math.(1988) Vol. 71, pp.237-261.

: A. Carriazo and V. Martin-Molina. Almost Cosymplectic and Almost Kenmotsu (κ,μ,ν)-Spaces. Mediterr. J. Math.10-(2013), 1551-1571

: P. Dacko and Z. Olszak. On Almost Cosympletic (κ,μ,ν)-Spaces. Banach Center Publications, 2005, Vol: 69, Issue: 1, 211-220

: P. Dacko and Z. Olszak. On Almost Cosymplectic (-1,μ,o)-Spaces. Central European Journal of Math. CEJM, 2005,318-330.

: M. Atçeken, Ü. Yildirim and S. Dirik. Pseudoparallel Invariant Submanifolds of (LCS)_{n}-Manifolds. Korean J. Math. 28(2), 2020, 275-284.

: M. Atçeken and P. Uygun. Characterizations for Totally Geodesic Submanifolds of (κ,μ)-Paracontact Metric Manifolds. Korean J. Math. 28(3), 555-571.

: S. Roy, S. Dey and A. Bhattacharyya, Conformal Einstein soliton within the framework of para-Kaehler manifold, Differential Geometry-Dynamical Systems, 23 (2021), 235-243.

: S. Roy, S. Dey and A. Bhattacharyya, A Kenmotsu metric as a conformal η-Einstein soliton, Carpathian Mathematical Publications, 13(1) (2021), 110-118.

: A. M. Blaga, On Gradient η-Einstein Solitons,Kragujevac Journal of Mathematics, 42(2) (2018), 229-237.

Published

14-11-2024

How to Cite

Mert, T., Atçeken, M. ., & Uygun, P. . (2024). Pseudosymmetric Almost α-Cosymplectic (κ,μ,ν)-Spaces Admitting Einstein Solitons. Communications in Mathematics and Applications, 15(2). Retrieved from http://rgnpublications.com/journals/index.php/cma/article/view/2537

Issue

Section

Research Article