Stability of the Functional Equation Deriving From Quadratic Function in Banach Space

Authors

DOI:

https://doi.org/10.26713/cma.v15i2.2536

Keywords:

Banach space, Hyers-Ulam stability, Quadratic functional equation

Abstract

In this manuscript, we introduce a quadratic functional equation of finite variable:
\begin{align}
\nonumber \sum\limits_{i=1}^m \phi \left(2v_i-\sum\limits_{1 \leq i \neq j}^m v_j\right)&=(m-7)\sum\limits_{1 \leq i <j \leq m} \phi (v_i+v_j)+\phi\left(\sum\limits_{i=1}^m v_i\right)\nonumber\\&\quad -(m^2-9m+5) \sum\limits_{i=1}^m \phi(v_i)
\end{align}
and examine its Hyers-Ulam stability of this functional equation in Banach space using direct and fixed point method.

Downloads

Download data is not yet available.

References

N. Alessa, K. Tamilvanan, G. Balasubramanian and K. Loganathan, Stability results of the functional equation deriving from quadratic function in random normed spaces, AIMS Mathematics 6(3) (2021), 2385 – 2397, DOI: 10.3934/math.2021145.

T. Aoki, On the stability of the linear transformation in Banach spaces, Journal of the Mathematical Society of Japan 2(1-2) (1950), 64 – 66, DOI: 10.2969/jmsj/00210064.

S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Co., Inc., River Edge, NJ, 420 pages(2002), DOI: 10.1142/4875.

T. Dominguez-Benavides, M. A. Khamsi and S. Samadi, Asymptotically regular mappings in modular function spaces, Scientiae Mathematicae Japonicae 53 (2) (2001), 295 – 304, URL: https://www.jams.jp/scm/contents/Vol-4-3/4-28.pdf.

Z. Gajda, On stability of additive mappings, International Journal of Mathematics and Mathematical Sciences 14(3) (1991), 431 – 434, URL: https://eudml.org/doc/46657.

P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, Journal of Mathematical Analysis and Applications 184(3) (1994), 431 – 436, DOI: 10.1006/jmaa.1994.1211.

D. H. Hyers, G. Isac and T. M. Rassias, Stability of Functional Equations in Several Variables, in: Progress in Nonlinear Differential Equations and Their Applications, Vol. 34, Birkhäuser Boston, Inc., Boston, MA, vii + 318 pages (1998), DOI: 10.1007/978-1-4612-1790-9.

D. H. Hyers, On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America 27(4) (1941), 222 – 224, URL: https://www.jstor.org/stable/87271.

S. S. Jin and Y.-H. Lee, On the stability of the functional equation deriving from quadratic and additive function in random normed spaces via fixed point method, Journal of the Chungcheong Mathematical Society 25(1) (2012), 51 – 63, URL: http://ccms.or.kr/data/pdfpaper/jcms25_1/25_1_51.pdf.

K.-W. Jun and Y.-H. Lee, On the Hyers-Ulam-Rassias stability of a pexiderized quadratic inequality, Mathematical Inequalities & Applications 4(1) (2001), 93 – 118, DOI: 10.7153/mia-04-08.

S.-M. Jung and P. K. Sahoo, Hyers-Ulam stability of the quadratic equation of Pexider type, Journal of the Korean Mathematical Society 38(3) (2001), 645 – 656, URL: https://jkms.kms.or.kr/journal/view.html?spage=645&volume=38&number=3.

T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proceedings of the American Mathematical Society 72(2) (2) (1978), 297 – 300, DOI: 10.2307/2042795.

S. M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York (1964).

Downloads

Published

14-11-2024
CITATION

How to Cite

Amrit, Kumar, A., & Antil, M. K. (2024). Stability of the Functional Equation Deriving From Quadratic Function in Banach Space. Communications in Mathematics and Applications, 15(2), 557–569. https://doi.org/10.26713/cma.v15i2.2536

Issue

Section

Research Article