Travelling Wave Solutions to Fourth-Order Nonlinear Equation

Authors

DOI:

https://doi.org/10.26713/cma.v15i3.2497

Keywords:

Fourth-order nonlinear equation, Optical solitons, Traveling wave solutions, Riccati- Bernoulli sub-ODE method

Abstract

In this paper, we study the soliton solutions of the fourth-order nonlinear partial differential equations (NPDE). The Riccati-Bernoulli (RB) sub-ODE method is applied to the fourth-order NPDE to investigate the exact and traveling wave solutions. We secure singular periodic wave solutions, kink-type soliton solution, dark soliton and singular soliton solution, which have unlimited application in mathematical physic, science and engineering. Some figures for the obtained solutions are demonstrated.

Downloads

References

M. A. Abdou and A. Elhanbaly, Construction of periodic and solitary wave solutions by the extended Jacobi elliptic function expansion method, Communications in Nonlinear Science and Numerical Simulation 12(7) (2007), 1229 – 1241, DOI: 10.1016/j.cnsns.2006.01.013.

G. P. Agrawal, Nonlinear fiber optics, in: Nonlinear Science at the Dawn of the 21st Century, Lecture Notes in Physics series, Vol. 542, Springer, Berlin — Heidelberg (2000), DOI: 10.1007/3-540-46629-0_9.

D. Baleanu, M. Inc, A. I. Aliyu and A. Yusuf, Dark optical solitons and conservation laws to the resonance nonlinear Shrödinger’s equation with Kerr law nonlinearity, Optik 147 (2017), 248 – 255, DOI: 10.1016%2Fj.ijleo.2017.08.080.

A. Biswas, Temporal 1-soliton solution of the complex Ginzburg-Landau equation with power law nonlinearity, Progress in Electromagnetics Research 96 (2009), 1 – 7, URL: https://www.jpier.org/ac_api/download.php?id=09073108.

A. Cangiani, E. H. Georgoulis, Y. A. Sabawi, Adaptive discontinuous Galerkin methods for elliptic interface problems, Mathematics of Computation 87(314) (2018), 2675 – 2707, DOI: 10.1090/mcom/3322.

Y. Chen and Z. Yan, New exact solutions of (2+1)-dimensional Gardner equation via the new sine-Gordon equation expansion method, Chaos, Solitons & Fractals 26(2) (2005), 399 – 406, DOI: 10.1016/j.chaos.2005.01.004.

J. J. Fang, D. S. Mou, H. C. Zhang and Y. Y. Wang, Discrete fractional soliton dynamics of the fractional Ablowitz-Ladik model, Optik 228 (2021), 166186, DOI: 10.1016/j.ijleo.2020.166186.

A. Hasegawa, Y. Kodama and A. Maruta, Recent progress in dispersion-managed soliton transmission technologies, Optical Fiber Technology 3(3) (1997), 197 – 213, DOI: 10.1006/ofte.1997.0227.

S. Ibrahim, Commutativity associated with Euler second-order differential equation, Advances in Differential Equations and Control Processes 28 (2022), 29 – 36, DOI: 10.17654/0974324322022.

S. Ibrahim, Commutativity of high-order linear time-varying systems, Advances in Differential Equations and Control Processes 27 (2022), 73 – 83, DOI: 10.17654/0974324322013.

S. Ibrahim, Discrete least square method for solving differential equations, Advances and Applications in Discrete Mathematics 30 (2022), 87 – 102.

S. Ibrahim and A. Rababah, Decomposition of fourth-order Euler-type linear time-varying differential system into cascaded two second-order Euler commutative pairs, Complexity 2022(1) (2022), 3690019, 9 pages, DOI: 10.1155/2022/3690019.

S. Ibrahim, T. A. Sulaiman, A. Yusuf, A. S. Alshomrani and D. Baleanu, Families of optical soliton solutions for the nonlinear Hirota-Schrodinger equation, Optical and Quantum Electronics 54 (2022), Article number 722, DOI: 10.1007/s11082-022-04149-x.

M. Inc, A. I. Aliyu and A. Yusuf, Traveling wave solutions and conservation laws of some fifth-order nonlinear equations, The European Physical Journal Plus 132(5) (2017), Article number 224, DOI: 10.1140/epjp/i2017-11540-7.

B. Karaman, New exact solutions of the time-fractional foam drainage equation via a Riccati-Bernoulli sub ODE method, in: Proceedings of Online International Symposium on Applied Mathematics and Engineering (ISAME22), January 21-23, 2022, Istanbul, Turkey, (2022).

A. D. Khalaf, A. Zeb, Y. A. Sabawi, S. Djilali and X. Wang, Optimal rates for the parameter prediction of a Gaussian Vasicek process, The European Physical Journal Plus 136(8) (2021), article number 808, DOI: 10.1140/epjp/s13360-021-01738-9.

N. A. Kudryashov, One method for finding exact solutions of nonlinear differential equations, Communications in Nonlinear Science and Numerical Simulation 17(6) (2012), 2248 – 2253, DOI: 10.1016/j.cnsns.2011.10.016.

M. Mirzazadeh, M. F. Mahmood, F. B. Majid, A. Biswas and M. Belic, Optical solitons in birefringent fibers with Riccati equation method, Optoelectronics and Advanced Materials – Rapid Communications 9(7-8) (2015), 1032 – 1036, URL: http://milivojbelic.com/wp-content/uploads/uploadDocs/OAM-RC_9_1032_2015-1564383514.pdf.

N. Ozdemir, H. Esen, A. Secer, M. Bayram, A. Yusuf and T. A. Sulaiman, Optical solitons and other solutions to the Hirota–Maccari system with conformable, M-truncated and beta derivatives, Modern Physics Letters B 36(11) (2022), 2150625, DOI: 10.1142/S0217984921506259.

Y. A. Sabawi, A posteriori error analysis in finite element approximation for fully discrete semilinear parabolic problems, in: Finite Element Methods and Their Applications, M. Baccouch (editor), IntechOpen, 316 pages (2020), DOI: 10.5772/intechopen.83274.

T. A. Sulaiman, A. Yusuf, A. S. Alshomrani and D. Baleanu, Lump collision phenomena to a nonlinear physical model in coastal engineering, Mathematics 10(15) (2022), 2805, DOI: 10.3390/math10152805.

T. A. Sulaiman, U. Younas, M. Younis, J. Ahmad, S. U. Rehman, M. Bilal and A. Yusuf, Modulation instability analysis, optical solitons and other solutions to the (2+1)-dimensional hyperbolic nonlinear Schrodinger’s equation, Computational Methods for Differential Equations 10(1) (2022), 179 – 190, DOI: 10.22034/cmde.2020.38990.1711.

G. Tao, J. Sabi’u, S. Nestor, R. M. El-Shiekh, L. Akinyemi, E. Az-Zo’bi and G. Betchewe, Dynamics of a new class of solitary wave structures in telecommunications systems via a (2+1)-dimensional nonlinear transmission line, Modern Physics Letters B 36(19) (2022), 2150596, DOI: 10.1142/S0217984921505965.

F. Tchier, A. I. Aliyu, A. Yusuf and M. Inc, Dynamics of solitons to the ill-posed Boussinesq equation, The European Physical Journal Plus 132 (2017), Article number 136, DOI: 10.1140/epjp/i2017-11430-0.

F. Tchier, A. Yusuf, A. I. Aliyu and M. Inc, Soliton solutions and conservation laws for lossy nonlinear transmission line equation, Superlattices and Microstructures 107 (2017), 320 – 336, DOI: 10.1016/j.spmi.2017.04.003.

F. Tchier, A. Yusuf, A. I. Aliyu and M. Inc, Soliton solutions and conservation laws for lossy nonlinear transmission line equation, Superlattices and Microstructures 107 (2017), 320 – 336, DOI: 10.1016/j.spmi.2017.04.003.

G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, xvii + 638 pages (2011), DOI: 10.1002/9781118032954.

X. F. Yang, Z. C. Deng and Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Advances in Difference Equations 2015 (2015), 117, DOI: 10.1186/s13662-015-0452-4.

Downloads

Published

14-11-2024
CITATION

How to Cite

Ibrahim, S. (2024). Travelling Wave Solutions to Fourth-Order Nonlinear Equation. Communications in Mathematics and Applications, 15(3), 1263–1272. https://doi.org/10.26713/cma.v15i3.2497

Issue

Section

Research Article