A Novel Approach to Solve Nonlinear Higher Order VFIDE Using the Laplace Transform and Adomian Decomposition Method

Authors

DOI:

https://doi.org/10.26713/cma.v15i1.2493

Keywords:

Integro differential equation (IDE), Volterra Fredholm-type integro differential equation (VFIDE), Modified Adomian Decomposition Method (MADM), Laplace Discrete Adomian Decomposition Method (LDADM)

Abstract

This study explores the application of a novel approach called the Laplace Discrete Modified Adomian Decomposition Method (LDMADM) to solve non-homogeneous higher-order nonlinear VFIDEs. LDMADM is an extension of the Laplace Modified Adomian Decomposition Method (LMADM) and combines it with quadrature integration criteria to improve accuracy. The proposed method is evaluated by comparing its results with exact solutions and calculating absolute error measurements. The study establishes the existence of unique solutions and presents experimental, numerical findings that demonstrate the high accuracy and effectiveness of the LDMADM approach. This method offers a promising alternative to analytical approaches for solving higher-order nonlinear Volterra Fredholmtype Integro Differential Equations (VFIDEs).

Downloads

Download data is not yet available.

References

S. Abbasbandy, Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method, Applied Mathematics and Computation 145 (2-3) (2003), 887 – 893, DOI: 10.1016/S0096-3003(03)00282-0.

S. S. Ahmed, S. A. H. Salih and M. R. Ahmed, Laplace adomian and Laplace modified adomian decomposition methods for solving nonlinear integro-fractional differential equations of the Volterra-Hammerstein type, Iraqi Journal of Science 60(10) (2019), 2207 – 2222, DOI: 10.24996/ijs.2019.60.10.15.

S. Alkan and V. F. Hatipoglu, Approximate solutions of Volterra-Fredholm integro-differential equations of fractional order, Tbilisi Mathematical Journal 10(2) (2017), 1 – 13, DOI: 10.1515/tmj-2017-0021.

E. Babolian and J. Biazar, Solution of nonlinear equations by modified adomian decomposition method, Applied Mathematics and Computation 132(1) (2002), 167 – 172, DOI: 10.1016/S0096-3003(01)00184-9.

H. Bakodah, M. Al-Mazmumy and S. O. Almuhalbedi, An efficient modification of the Adomian decomposition method for solving integro-differential equations, Mathematical Sciences Letters 6(1) (2017), 15 – 21, DOI: 10.18576/msl/060103.

L. Dawood, A. Hamoud and N. Mohammed, Laplace discrete decomposition method for solving nonlinear Volterra-Fredholm integro-differential equations, Journal of Mathematics and Computer Science 21(2) (2020), 158 – 163, DOI: 10.22436/jmcs.021.02.07.

Y. Daoud and A. A. Khidir, Modified Adomian decomposition method for solving the problem of boundary layer convective heat transfer, Propulsion and Power Research 7(3) (2018), 231 – 237, DOI: 10.1016/j.jppr.2018.05.005.

J.-S. Duan, R. Rach, A.-M. Wazwaz, T. Chaolu and Z. Wang, A new modified Adomian decomposition method and its multistage form for solving nonlinear boundary value problems with Robin boundary conditions, Applied Mathematical Modelling 37(20-21) (2013), 8687 – 8708, DOI: 10.1016/j.apm.2013.02.002.

H. Dwyer, The Laplace transform: Motivating the definition, CODEE Journal 8(1) (2011), Article 5, DOI: 10.5642/codee.201108.01.05.

A. A. Hamoud and K. P. Ghadle, Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations, Journal of Mathematical Modeling 6(1) (2018), 91 – 104, DOI: 10.22124/JMM.2018.2826.

A. A. Hamoud and K. P. Ghadle, The combined modified Laplace with Adomian decomposition method for solving the nonlinear Volterra-Fredholm integro differential equations, Journal of the Korean Society for Industrial and Applied Mathematics 21(1) (2017), 17 – 28, DOI: 10.12941/jksiam.2017.21.017.

M. M. Hosseini and H. Nasabzadeh, Modified Adomian decomposition method for specific second order ordinary differential equations, Applied Mathematics and Computation 186(1) (2007), 117 – 123, DOI: 10.1016/j.amc.2006.07.094.

S. A. Khuri, A Laplace decomposition algorithm applied to a class of nonlinear differential equations, Journal of Applied Mathematics 1(4) (2001), 141 – 155, DOI: 10.1155/S1110757X01000183.

M. Kumar and N. Singh, Modified Adomian Decomposition Method and computer implementation for solving singular boundary value problems arising in various physical problems, Computers & Chemical Engineering 34(11) (2010), 1750 – 1760, DOI: 10.1016/j.compchemeng.2010.02.035.

P. V. Ramana and B. R. Prasad, Modified Adomian decomposition method for Van der Pol equations, International Journal of Non-Linear Mechanics 65 (2014), 121 – 132, DOI: 10.1016/j.ijnonlinmec.2014.03.006.

D. Saha, N. Sarkar, M. Sen and S. Saha, A novel numerical technique and stability criterion of VF type integro-differential equations of non-integer order, International Journal of Nonlinear Analysis and Applications 13 (2022), 133 – 145, DOI: 10.22075/IJNAA.2022.6339.

N. Sarkar and M. Sen, An investigation on existence and uniqueness of solution for Integro differential equation with fractional order, Journal of Physics: Conference Series 1849 (2021), 012011, DOI: 10.1088/1742-6596/1849/1/012011.

Downloads

Published

24-04-2024
CITATION

How to Cite

Miah, B. A., Sen, M., & Gupta, D. (2024). A Novel Approach to Solve Nonlinear Higher Order VFIDE Using the Laplace Transform and Adomian Decomposition Method. Communications in Mathematics and Applications, 15(1), 301–314. https://doi.org/10.26713/cma.v15i1.2493

Issue

Section

Research Article