Analytical and Numerical Solutions for Glial Cells Interactions between Immunotherapy and Cancer Cells

Authors

DOI:

https://doi.org/10.26713/cma.v14i2.2465

Keywords:

Brain tumor, Immunotherapy, Glial cells, Glioma cells, Analytical solution

Abstract

In this article, we investigate a mathematical modeling applying a system of differential equations, that explains a interaction of healthy cells, glioma cells, macrophages, CD8+ T cells, and immunotherapy. Further, analytical method has been investigated. Moreover, the stability analysis and numerical simulations are also given for our proposed model. Finally, the quality of our model is also examined by comparing the graph of the analytical method and numerical simulation.

Downloads

Download data is not yet available.

References

B. M. Alexander, M. Othus, H. B. Caglar and A. M. Allen, Tumor volume is a prognostic factor in non–small-cell lung cancer treated with chemoradiotherapy, International Journal of Radiation Oncology, Biology, Physics 79(5) (2011), 1381 – 1387, DOI: 10.1016/j.ijrobp.2009.12.060.

S. Banerjee, S. Khajanchi and S. Chaudhuri, A mathematical model to elucidate brain tumor abrogation by immunotherapy with T11 target structure, Plos One 10(5) (2015), e0123611, DOI: 10.1371/journal.pone.0123611.

M. J. Berendt and R. J. North, T-cell–mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor, The Journal of Experimental Medicine 151(1) (1980), 69 – 80, DOI: 10.1084/jem.151.1.69.

P. J. Deckers, R. C. Davis, G. A. Parker and J. A. Mannick, The effect of tumor size on concomitant tumor immunity, Cancer Research 33(1) (1973), 33 – 39, URL: https://pubmed.ncbi.nlm.nih.gov/4682321/.

H.-H. Dubben, H. D. Thames, and H.-P. Beck-Bornholdt, Tumor volume: a basic and specific response predictor in radiotherapy, Radiotherapy & Oncology 47(2) (1998), 167 – 174, DOI: 10.1016/s0167-8140(97)00215-6.

G. P. Dunn, L. J. Old and R. D. Schreiber, The three Es of cancer immunoediting, Annual Review of Immunology 22 (2004), 329 – 360, DOI: 10.1146/annurev.immunol.22.012703.104803.

K. C. Iarosz, F. S. Borges, A. M. Batista, M. S. Baptista, R. A. N. Siqueira, R. L. Viana and S. R. Lopes, Mathematical model of brain tumour with glia-neuron interactions and chemotherapy treatment, Journal of Theoretical Biology 368 (2015), 113 – 121, DOI: 10.1016/j.jtbi.2015.01.006.

S. Khajanchi, Stability analysis of a mathematical model for glioma-immune interaction under optimal therapy, International Journal of Nonlinear Sciences and Numerical Simulation 20(3-4) (2019), 269 – 285, DOI: 10.1515/ijnsns-2017-0206.

N. Kronik, Y. Kogan, V. Vainstein and Z. Agur, Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics, Cancer Immunology, Immunotherapy 57(3) (2008), 425 – 439, DOI: 10.1007/s00262-007-0387-z.

V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bulletin of Mathematical Biology 56(2) (1994), 295 – 321, DOI: 10.1007/bf02460644.

S. T. R. Pinho, F. S. Bacelar, R. F. S. Andrade and H. I. Freedman, A mathematical model for the effect of anti-angiogenic therapy in the treatment of cancer tumours by chemotherapy, Nonlinear Analysis: Real World Applications 14(1) (2013), 815 – 828, DOI: 10.1016/j.nonrwa.2012.07.034.

W. Rzeski, S. Pruskil, A. Macke, U. Felderhoff-Mueser, A. K. Reiher, F. Hoerster, C. Jansma, B. Jarosz, V. Stefovska, P. Bittigau and C. Ikonomidou, Anticancer agents are potent neurotoxins in vitro and in vivo, Annals of Neurology 56(3) (2004), 351 – 360, DOI: 10.1002/ana.20185.

N. H. Segal, O. Hamid, W. Hwu, C. Massard, M. Butler, S. Antonia, A. Blake-Haskins, P. B. Robbins, X. Li, J. Vasselli and S. Khleif, A phase I multi-arm dose-expansion study of the anti-programmed cell death-ligand-1(Pd-L1) antibody medi4736: preliminary data, Annals of Oncology 25(Supplement 4) (2014), IV365, DOI: 10.1093/annonc/mdu342.11.

M. Soliman, A. Yaromina, S. Appold, D. Zips, C. Reiffenstuhl, A. Schreiber, H. D. Thames, M. Krause and M. Baumann, GTV differentially impacts locoregional control of non-small cell lung cancer (NSCLC) after different fractionation schedules: Subgroup analysis of the prospective randomized CHARTWEL trial, Radiotherapy & Oncology 106(3) (2013), 299 – 304, DOI: 10.1016/j.radonc.2012.12.008.

J. S. Spratt and T. L. Spratt, Rates of growth of pulmonary metastases and host survival, Annals of Surgery 159(2) (1964), 161 – 171, DOI: 10.1097/00000658-196402000-00001.

J. Vaage, Influence of tumor antigen on maintenance versus depression of tumor-specific immunity, Cancer Research 33(3) (1973), 493 – 503, URL: https://aacrjournals.org/cancerres/article/33/3/493/479220/Influence-of-Tumor-Antigen-on-Maintenance-versus.

M. Werner-Wasik, R. S. Swann, J. Bradley, M. Graham, B. Emami, J. Purdy and W. Sause, Increasing tumor volume is predictive of poor overall and progression-free survival: secondary analysis of the radiation therapy oncology Group 93-11 phase I-II radiation dose-escalation study in patients with inoperable non–small-cell lung cancer, International Journal of Radiation Oncology, Biology, Physics 70(2) (2008), 385 – 390, DOI: 10.1016/j.ijrobp.2007.06.034.

Downloads

Published

18-09-2023
CITATION

How to Cite

Kaviyan, E. V., Jayakumar, T., Sujitha, S., & Maheskumar, D. (2023). Analytical and Numerical Solutions for Glial Cells Interactions between Immunotherapy and Cancer Cells. Communications in Mathematics and Applications, 14(2), 925–935. https://doi.org/10.26713/cma.v14i2.2465

Issue

Section

Research Article