Soft \(n\)-Normed Linear Spaces: Generalizations and Extensions from Soft Normed Spaces

Authors

DOI:

https://doi.org/10.26713/cma.v15i1.2427

Keywords:

Soft sets, Soft linear spaces, Soft NDLS, Soft \(n\)-NDLS

Abstract

This article presents the notion of soft 2-normed linear space (NDLS) and extends it to soft \(n\)-NDLS, providing a versatile framework beyond traditional soft NDLS and \(n\)-normed spaces (NDS). Established results in soft NDLS are adapted to soft \(n\)-NDLS, bolstered by practical examples.

Downloads

Download data is not yet available.

References

T. Bera and N. K. Mahapatra, Neutrosophic soft normed linear spaces, Neutrosophic Sets and Systems 23 (2018), 52 – 71, URL: https://digitalrepository.unm.edu/cgi/viewcontent.cgi?article=1332&context=nss_journal.

T. Bera and N. K. Mahapatra, On neutrosophic soft linear spaces, Fuzzy Information and Engineering 9(3) (2017), 299 – 324, DOI: 10.1016/j.fiae.2017.09.004.

S. Das and S. K. Samanta, On soft complex sets and soft complex numbers, The Journal of Fuzzy Mathematics 21(1) (2013), 195 – 216.

S. Das and S. K. Samanta, On soft inner product spaces, Annals of Fuzzy Mathematics and Informatics 6(1) (2013), 151 – 170, URL: http://www.afmi.or.kr/papers/2013/Vol-06_No-01/AFMI-6-1(1--226)/AFMI-6-1(151--170)-H-120914-1R1.pdf.

S. Das and S. K. Samanta, Soft linear operators in soft normed linear spaces, Annals of Fuzzy Mathematics and Informatics 6(2) (2013), 295 – 314, URL: http://www.afmi.or.kr/papers/2013/Vol-06_No-02/AFMI-6-2(227--453)/AFMI-6-2(295--314)-H-121204R1.pdf.

S. Das, P. Majumdar and S. K. Samanta, On soft linear spaces and soft normed linear spaces, arXiv preprint arXiv:1308.1016, (2013), DOI: 10.48550/arXiv.1308.1016.

S. Gähler, Lineare 2-normierte Räume, Mathematische Nachrichten 28(1-2) (1964), 1 – 43, DOI: 10.1002/mana.19640280102.

H. Gunawan and M. Mashadi, On n-normed spaces, International Journal of Mathematics and Mathematical Sciences 27 (2001), 965397, 9 pages, DOI: 10.1155/S0161171201010675.

Y. B. Jun, Soft BCK/BCI-algebras, Computers & Mathematics with Applications 56(5) (2008), 1408 – 1413, DOI: 10.1016/j.camwa.2008.02.035.

D. Molodtsov, Soft set theory – First results, Computers & Mathematics with Applications 37(4-5) (1999), 19 – 31, DOI: 10.1016/S0898-1221(99)00056-5.

A. L. Narayanan and S. Vijayabalaji, Fuzzy n-normed linear space, International Journal of Mathematics and Mathematical Sciences 2005 (2005), 640286, 15 pages, DOI: 10.1155/IJMMS.2005.3963.

N. Thillaigovindan, S. Vijayabalaji and S. A. Shanthi, Fuzzy n-Normed Linear Spaces, Lambert Academic Publishing, Germany, 196 pages (2010).

S. Vijayabalaji, Cubic n-Normed Linear Spaces, 1st edition, Lambert Academic Publishing, Germany, 76 pages (2017).

M. I. Yazar, T. Bilgin, S. Bayramov and C. Gunduz (Aras), A new view on soft normed spaces, International Mathematical Forum 9(24) (2014), 1149 – 1159, DOI: 10.12988/imf.2014.4470.

Downloads

Published

24-04-2024
CITATION

How to Cite

Reddy, B. S., Vijayabalaji, S., Punniyamoorthy, K., & Rao, A. V. R. . (2024). Soft \(n\)-Normed Linear Spaces: Generalizations and Extensions from Soft Normed Spaces. Communications in Mathematics and Applications, 15(1), 265–277. https://doi.org/10.26713/cma.v15i1.2427

Issue

Section

Research Article