Super Restrained Domination in the Join of Some Graphs

Authors

DOI:

https://doi.org/10.26713/cma.v15i1.2420

Keywords:

Domination, Restrained domination, Super domination, Super restrained domination, Join

Abstract

Let \(G=(V(G),E(G))\) be a simple graph. A set \(S\subseteq V(G)\) is a restrained dominating set \(S\) if every vertex not in \(S\) is adjacent to a vertex in \(S\) and to a vertex in \(V(G)\backslash S\). It is a super restrained dominating set if for every vertex \(u\in V(G)\backslash S\), there exists \(v\in S\) such that \(N_G(v)\cap (V(G)\backslash S)=\{u \}\). The minimum cardinality of a super restrained dominating set in \(G\), denoted by \(\gamma _{\mathit{spr}} (G)\), is called the super restrained domination number of \(G\). In this paper, the researchers obtained the super restrained domination number of the following graphs: \(F_n\cong K_1+P_n\), \(W_n\cong K_1+C_n\), \(S_n\cong K_1+\overline{K}_n\), \(D^{(m)}_n\cong K_1+mK_{n-1}\) and \(K_{m,n}\cong \overline{K}_m+\overline{K}_n\).

Downloads

Download data is not yet available.

References

G. Chartrand and P. Zhang, Chromatic Graph Theory, 1st edition, Chapman and Hall/CRC, New York, 504 pages (2008), DOI: 10.1201/9781584888017.

G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. C. Laskar and L. R. Markus, Restrained domination in graphs, Discrete Mathematics 203(1-3) (1999), 61 – 69, DOI: 10.1016/S0012-365X(99)00016-3.

E. L. Enriquez, Super restrained domination in the corona of graphs, International Journal of Latest Engineering Research and Applications 3(5) (2018), 1 – 6.

G. B. Monsanto and H. M. Rara, Resolving restrained domination in graphs, European Journal of Pure and Applied Mathematics 14(3) (2021), 829 – 841, DOI: 10.29020/nybg.ejpam.v14i3.3985.

J. A. Telle and A. Proskurowski, Algorithms for vertex partitioning problems on partial k-trees, SIAM Journal on Discrete Mathematics 10(4) (1997), 529 – 550, DOI: 10.1137/S0895480194275825.

Downloads

Published

24-04-2024
CITATION

How to Cite

Lorono, M. L., & Espinola, S. O. (2024). Super Restrained Domination in the Join of Some Graphs. Communications in Mathematics and Applications, 15(1), 95–110. https://doi.org/10.26713/cma.v15i1.2420

Issue

Section

Research Article