Even Intensity and Implementation of Fuzzy Intrinsic Edge-Magic Graphs

Authors

DOI:

https://doi.org/10.26713/cma.v15i1.2417

Keywords:

Fuzzy intrinsic edge-magic labelling, fuzzy intrinsic edge-magic graph, star graph, paw graph, secure, supreme & subordinate intrinsic edge magic graph

Abstract

A graph labelling is an assignment of integers to the vertices or edges, or both under certain restrictions. A fuzzy graph \(G\) is said to be intrinsic edge-magic if it satisfies the intrinsic edge-magic labelling with intrinsic constant \(\lambda _{c}=\sigma (v_{i}) +\mu (v_{i}v_{j})+\sigma (v_{j})\), for all \(v_{i}, v_{j} \in V\). In this article, we introduce the even intensity of intrinsic edge magic graph and the application of fuzzy intrinsic edge magic graph is illustrated with suitable example.

Downloads

Download data is not yet available.

References

S. Avadayappan, P. Jeyanthi, and R. Vasuki, Super magic strength of a graph, Indian Journal of Pure and Applied Mathematics 32(11) (2001), 1621 – 1630.

H. Enomoto, A.S. Llado, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT Journal of Mathematics 34(2) (1998), 105 – 109, DOI: 10.55937/sut/991985322.

A.N. Gani and M.B. Ahmed, Order and size in fuzzy graph, Bulletin of Pure and Applied Sciences 22E(1) (2003), 145 – 148.

A.N. Gani, M. Akram and S.D. Rajalaxmi, Novel properties of fuzzy labelling graphs, Journal of Mathematics 2014(2014), 375135, 6 pages, DOI: 10.1155/2014/375135.

M. Kaliraja and M. Sasikala, On the construction of fuzzy intrinsic edge-magic graphs, Journal of Mathematical and Computational Science 9(6) (2019), 692 – 701, DOI: 10.28919/jmcs/4210.

A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canadian Mathematical Bulletin 13(1970), 451 – 461, DOI: 10.4153/CMB-1970-084-1.

A. Rosenfeld, Fuzzy graphs, in: Fuzzy Sets and their Applications to Cognitive and Decision Processes, Proceedings of the US–Japan Seminar on Fuzzy Sets and their Applications, held at the University of California, Berkeley, California, July 1-4, 1974, pp. 77-95, Academic Press, USA (1975), DOI: 10.1016/B978-0-12-775260-0.50008-6.

K.R. Sobha, S.C. Kumar and R.S. Sheeba, Fuzzy magic graphs – a brief study, International Journal of Pure and Applied Mathematics 119(15) (2018), 1161 – 1170.

L.A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338 – 358, DOI: 10.1016/S0019-9958(65)90241-X.

Downloads

Published

24-04-2024
CITATION

How to Cite

Kaliraja, M., & Sasikala, M. (2024). Even Intensity and Implementation of Fuzzy Intrinsic Edge-Magic Graphs. Communications in Mathematics and Applications, 15(1), 359–366. https://doi.org/10.26713/cma.v15i1.2417

Issue

Section

Research Article