An Optimal Solution to Multi-Goal Fuzzy Linear Programming Problems Using Elementary Transformations

Authors

DOI:

https://doi.org/10.26713/cma.v15i1.2402

Keywords:

Linear Programming Problem (LPP), Multi-goal, Elementary Transformation Method, Triangular Number

Abstract

This article explores how to solve multipurpose problems to obtain optimal solutions using fuzzy linear programming. Our goal is to minimize production and transportation costs by using the most basic transportation methods and comparing the results to conventional methods. We discuss the results of numerical examples and illustrate this method.

Downloads

Download data is not yet available.

References

T. Allahviranloo, F. H. Lotfi, M. K. Kiasary, N. A. Kiani and L. Alizadeh, Solving fully fuzzy linear programming problem by the ranking function, Applied Mathematical Sciences 2(1-4) (2008), 19 – 32.

J. Chiang, Fuzzy linear programming based on statistical confidence interval and interval-valued fuzzy set, European Journal of Operational Research 129(1) (2001), 65 – 86, DOI: 10.1016/S0377-2217(99)00404-X.

M. Delgado, J. L. Verdegay and M. A. Vila, A general model for fuzzy linear programming, Fuzzy Sets and Systems 29(1) (1989), 21 – 29, DOI: 10.1016/0165-0114(89)90133-4.

K. Ganesan and P. Veeramani, Fuzzy linear programs with trapezoidal fuzzy numbers, Annals of Operations Research 143(1) (2006), 305 – 315, DOI: 10.1007/s10479-006-7390-1.

X. Guo and D. Shang, Fuzzy approximate solution of positive fully fuzzy linear matrix equations, Journal of Applied Mathematics 2013 (2013), Article ID 178209, 7 pages, DOI: 10.1155/2013/178209.

S. M. Hashemi, M. Modarres, E. Nasrabadi and M. M. Nasrabadi, Fully fuzzified linear programming, solution and duality, Journal of Intelligent & Fuzzy Systems 17(3) (2006), 253 – 261.

N. van Hop, Solving fuzzy (stochastic) linear programming problems using superiority and inferiority measures, Information Sciences 177(9) (2007), 1977 – 1991, DOI: 10.1016/j.ins.2006.12.001.

K. D. Jamison and W. A. Lodwick, Fuzzy linear programming using a penalty method, Fuzzy Sets and Systems 119(1) (2001), 97 – 110, DOI: 10.1016/S0165-0114(99)00082-2.

M. Jiménez, M. Arenas, A. Bilbao and M. V. Rodríguez, Linear programming with fuzzy parameters: An interactive method resolution, European Journal of Operational Research 177(3) (2007), 1599 – 1609, DOI: 10.1016/j.ejor.2005.10.002.

A. Kumar, J. Kaur and P. Singh, A new method for solving fully fuzzy linear programming problems, Applied Mathematical Modelling 35(2) (2011), 817 – 823, DOI: 10.1016/j.apm.2010.07.037.

T. León and E. Vercher, Solving a class of fuzzy linear programs by using semi-infinite programming techniques, Fuzzy Sets and Systems 146(2) (2004), 235 – 252, DOI: 10.1016/j.fss.2003.09.010.

X. Liu, Measuring the satisfaction of constraints in fuzzy linear programming, Fuzzy Sets and Systems 122(2) (2001), 263 – 275, DOI: 10.1016/S0165-0114(00)00114-7.

F. H. Lotfi, T. Allahviranloo, M. A. Jondabeh and L. Alizadeh, Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution, Applied Mathematical Modelling 33(7) (2009), 3151 – 3156, DOI: 10.1016/j.apm.2008.10.020.

N. Mahdavi-Amiri and S. H. Nasseri, Duality results and a dual simplex method for linear programming problems with trapezoidal fuzzy variables, Fuzzy Sets and Systems 158(17) (2007), 1961 – 1978, DOI: 10.1016/j.fss.2007.05.005.

H. R. Maleki, M. Tata and M. Mashinchi, Linear programming with fuzzy variables, Fuzzy Sets and Systems 109(1) (2000), 21 – 33, DOI: 10.1016/S0165-0114(98)00066-9.

H. Rommelfanger, Fuzzy linear programming and applications, European Journal of Operational Research 92(3) (1996), 512 – 527, DOI: 10.1016/0377-2217(95)00008-9.

Y. Tan and Y. Long, Option-game approach to analyze technology innovation investment under fuzzy environment, Journal of Applied Mathematics 2012 (2012), Article ID 830850, 9 pages, DOI: 10.1155/2012/830850.

H.-R. Tsai and T. Chen, A fuzzy nonlinear programming approach for optimizing the performance of a four-objective fluctuation smoothing rule in a wafer fabrication factory, Journal of Applied Mathematics 2013 (2013), Article ID 720607, 15 pages, DOI: 10.1155/2013/720607.

H.-C. Wu, Optimality conditions for linear programming problems with fuzzy coefficients, Computers & Mathematics with Applications 55(12) (2008), 2807 – 2822, DOI: 10.1016/j.camwa.2007.09.004.

L. Zhang, X. Xu and L. Tao, Some similarity measures for triangular fuzzy number and their applications in multiple criteria group decision-making, Journal of Applied Mathematics 2013 (2013), Article ID 538261, 7 pages, DOI: 10.1155/2013/538261.

Downloads

Published

24-04-2024
CITATION

How to Cite

Shrivastava, A. ., Saxena, B., Rathore , V., & Bhardwaj, R. (2024). An Optimal Solution to Multi-Goal Fuzzy Linear Programming Problems Using Elementary Transformations. Communications in Mathematics and Applications, 15(1), 73–79. https://doi.org/10.26713/cma.v15i1.2402

Issue

Section

Research Article