The Regular Domination Number of Some Special Graphs

Authors

DOI:

https://doi.org/10.26713/cma.v15i1.2393

Keywords:

Domination, Regular domination, Regular domination number, Regular dominating set

Abstract

The purpose of this article is to illustrate the concept of regular domination on a variety of unique graph types, including complete graphs, path graphs, cycle graphs, lollipop graphs, barbell graphs, gear graphs, Petersen graphs, helm graphs, jellyfish graphs, jewel graphs, and complete bipartite graphs. We also determine the regular domination for specific operations, such as the join of two graphs and the corona product of two graphs.

Downloads

Download data is not yet available.

References

P. Z. Akbari, V. J. Kaneria and N. A. Parmar, Absolute mean graceful labeling of jewel graph and jelly fish graph, International Journal of Mathematics Trends and Technology 68(1) (2022), 86 – 93, DOI: 10.14445/22315373/IJMTT-V68I1P510.

C. Berge, The Theory of Graphs and Its Applications, Methuen Co. Ltd., London (1962).

A. Brandstädt, V. B. Le and J. P. Spinrad, Graph Classes: A Survey, Discrete Mathematics and Applications series, Society for Industrial and Applied Mathematics, Philadelphia, xi + 295 pages (1999), DOI: 10.1137/1.9780898719796.

A. Frendrup, M. A. Henning, B. Randerath and P. D. Vestergaard, An upper bound on the domination number of a graph with minimum degree 2, Discrete Mathematics 309(4) (2009), 639 – 646, DOI: 10.1016/j.disc.2007.12.080.

J. Gallian, Graph labeling, Electronic Journal of Combinatorics DS6 (2023), 1 – 644, DOI: 10.37236/27.

C. E. Go and S. R. Canoy, Jr., Domination in corona and join of graphs, International Mathematical Forum 6(16) (2011), 763 – 771.

T. W. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs, 1st edition, CRC Press, Boca Raton, 464 pages (1998), DOI: 10.1201/9781482246582.

M. Herbster and M. Pontil, Prediction on a graph with a perception, in: Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference, B. Schölkopf, J. Platt and T. Hofmann (editors), The MIT Press, 2007, DOI: 10.7551/mitpress/7503.001.0001.

D. A. Holton and J. Sheehan, The Petersen Graph, Cambridge University Press, Cambridge (1993), DOI: 10.1017/CBO9780511662058.

A. A. Khalil, Determination and testing the domination numbers of helm graph, web graph and levi graph using MATLAB, Journal of Education and Science 24(2) (1999), 103 – 116, DOI: 10.33899/edusj.1999.58719.

C. S. Nagabhushana, B. N. Kavitha and H. M. Chudamani, Split and equitable domination of some special graph, International Journal of Science and Technology and Engineering 4(2) (2017), 50 – 54.

S. R. Nayaka, Puttaswamy and S. Purushothama, Pendant domination polynomial of a graph, International Journal of Pure and Applied Mathematics 117(11) (2017), 193 – 199.

O. Ore, Theory of Graphs, American Mathematical Society Colloquium Publications, Vol. 38, American Mathematical Society, Providence, RI (1962).

P. Prabakaran, N. V. Kumar and N. Preethi, Regular domination in various fuzzy graphs, Journal of Physics: Conference Series 1947 (2021), 012054, DOI: 10.1088/1742-6596/1947/1/012054.

R. S. Rajan, J. Anitha and I. Rajasingh, Graphs with 2-power domination number 2, International Journal of Pure and Applied Mathematics 101(5) (2015), 739 – 745.

A. Sugumaran and E. Jayachandran, Domination number of some graphs, International Journal of Scientific Development and Research 3(11) (2018), 386 – 391.

Downloads

Published

24-04-2024
CITATION

How to Cite

Rani, J., & Mehra, S. (2024). The Regular Domination Number of Some Special Graphs. Communications in Mathematics and Applications, 15(1), 161–178. https://doi.org/10.26713/cma.v15i1.2393

Issue

Section

Research Article