\(\mathbb{R}\)-Complex Finsler Spaces With Generalized Kropina Metric

Authors

  • Renu Department of Mathematics and Statistics, Banasthali Vidyapith, Jaipur 304022, Rajasthan, India https://orcid.org/0009-0004-6802-6650
  • Ramdayal Singh Kushwaha Department of Applied Science & Humanities Government Engineering College, Buxar 802103, Bihar, India (Department of Science, Technology and Technical Education, Bihar, Patna, Government of Bihar) https://orcid.org/0000-0002-0766-6070

DOI:

https://doi.org/10.26713/cma.v15i1.2388

Keywords:

Complex Finsler space, \(\mathbb{R}\)-complex Finsler space, Fundamental metric tensors

Abstract

The study of \(\mathbb{R}\)-complex Finsler spaces with an \((\alpha, \beta)\)-metric is a fundamental problem in Finsler geometry. In this paper, we introduce the concept of \(\mathbb{R}\)-complex Finsler spaces with a generalized Kropina metric given by \(F = \frac{\alpha^{m+1}}{\beta^m}\). We derive explicit formulas for the fundamental metric tensor fields \(g_{ij}\) and \(g_{i\bar{j}}\), as well as their determinants and inverse tensor fields for this metric. Additionally, we discuss various properties of non-Hermitian \(\mathbb{R}\)-complex Finsler spaces with the aforementioned metric.

Downloads

Download data is not yet available.

References

M. Abate and G. Patrizio, Finsler Metrics - A Global Approach with Applications to Geometric Function Theory, Lecture Notes in Mathematics (LNM, Vol. 1591), Springer-Verlag, Heidelberg, ix + 182 pages (1994), DOI: 10.1007/BFB0073980.

T. Aikou, Projective flatness of complex Finsler metrics, Publicationes Mathematicae Debrecen 63(3) (2003), 343 – 362, DOI: 10.5486/PMD.2003.2690.

N. Aldea, About a special class of two-dimensional complex Finsler spaces, Indian Journal of Pure and Applied Mathematics 43 (2012), 107 – 127, DOI: 10.1007/s13226-012-0007-2.

N. Aldea and G. Campean, On some classes of R-complex Hermitian Finsler spaces, Journal of the Korean Mathematical Society 52(3) (2015), 587 – 601, DOI: 10.4134/JKMS.2015.52.3.587.

N. Aldea and G. Munteanu, On complex Finsler spaces with Randers metric, Journal of the Korean Mathematical Society 46(5) (2009), 949 – 966, DOI: 10.4134/JKMS.2009.46.5.949.

N. Aldea and M. Purcaru, R-complex Finsler spaces with (α,β)-metric, Novi Sad Journal of Mathematics 38(1) (2008), 1 – 9, URL: https://sites.dmi.uns.ac.rs/nsjom/Papers/38_1/NSJOM_38_1_001_009.pdf.

P. L. Antonelli, R. S. Ingarden and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Fundamental Theories of Physics series (FTPH, Vol. 58), Springer, Dordrecht, xv + 311 pages (1993), DOI: 10.1007/978-94-015-8194-3.

G. Câmpean and M. Purcaru, R-complex hermitian (α,β)-metrics, Bulletin of theTransilvaniaUniversity of Bra¸sov 7(56)(2) (2014), 15 – 28, URL: https://webbut.unitbv.ro/index.php/Series_III/article/view/1957/1678.

R. S. Ingarden, Information Geometry of Thermodynamics, in: Transactions of the Tenth Prague Conference, Czechoslovak Academy of Sciences, Vol. 10A-B, J. Á. Višek (editor), Springer, Dordrecht, DOI: 10.1007/978-94-009-3859-5_44.

V. K. Kropina, On projective Finsler spaces with a certain special form, Naucn. Doklady vyss. Skoly, fiz.-mat. Nauki 1959(2) (1960), 38 – 42.

M. Matsumoto, A slope of a mountain is a Finsler surface with respect to a time measure, Journal of Mathematics of Kyoto University 29(1) (1989), 17 – 25, DOI: 10.1215/KJM/1250520303.

M. Matsumoto, Theory of Finsler spaces with (α,β)-metric, Reports on Mathematical Physics 31(1) (1992), 43 – 83, DOI: 10.1016/0034-4877(92)90005-L.

G. Munteanu, Complex Spaces in Finsler, Lagrange and Hamilton Geometries, Fundamental Theories of Physics series (FTPH, Vol. 141), Springer, Dordrecht, xi + 228 pages (2004), DOI: 10.1007/978-1-4020-2206-7.

G. Munteanu and M. Purcaru, On R-complex Finsler spaces, Balkan Journal of Geometry and Its Applications 14(1) (2009), 52 – 59, URL: http://www.mathem.pub.ro/bjga/v14n1/B14-1-mu.pdf.

G. B. Rizza, Strutture di Finsler di tipo quasi Hermitiano, Rivista Di Matematica Della Università Di Parma 4 (2) (1963), 83 – 106, URL: http://www.rivmat.unipr.it/fulltext/1963-4/1963-4-083.pdf.

V. S. Sabau and H. Shimada, Classes of Finsler spaces with (α,β)-metric, Reports on Mathematical Physics 47(1) (2001), 31 – 48, DOI: 10.1016/S0034-4877(01)90004-7.

G. Shanker and R. S. Kushwaha, Nonholonomic frames for finsler spaces with a special quartic metric, International Journal of Pure and Applied Mathematics 120(2) (2018), 283 – 290, DOI: 10.12732/ijpam.v120i2.12.

Z. Shen and C. Yu, On Einstein square metrics, Publicationes Mathematicae Debrecen 85(3-4) (2014), 413 – 424, DOI: 10.5486/PMD.2014.6015.

C. Shibata, On finsler spaces with kropina metric, Reports on Mathematical Physics 13(1) (1978), 117 – 128, DOI: 10.1016/0034-4877(78)90024-1.

Downloads

Published

24-04-2024
CITATION

How to Cite

Renu, & Kushwaha, R. S. (2024). \(\mathbb{R}\)-Complex Finsler Spaces With Generalized Kropina Metric. Communications in Mathematics and Applications, 15(1), 243–252. https://doi.org/10.26713/cma.v15i1.2388

Issue

Section

Research Article