Coefficient Bounds for Bi-Univalent Functions With Ruscheweyh Derivative and Sălăgean Operator

Authors

DOI:

https://doi.org/10.26713/cma.v14i3.2383

Keywords:

Univalent functions, Bi-univalent function, Starlike and convex functions

Abstract

This paper inaugurate two subclasses of bi-univalent functions on open unit disk \(\Delta\) and obtain estimates on the initial coefficient for the functions in these subclasses by using Sălăgean and Ruscheweyh differential operators.

Downloads

Download data is not yet available.

References

D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Mathematical Analysis and its Applications (Proceedings of the International Conference on Mathematical Analysis and its Applications, Kuwait, 1985), 1988, pp. 53 – 60, DOI: 10.1016/B978-0-08-031636-9.50012-7.

S. Bulut, A new subclass of analytic functions defined by generalized Ruscheweyh differential operator, Journal of Inequalities and Applications 2008 (2008), Article number: 134932, DOI: 10.1155/2008/134932.

L.-I. Cotîrla, New classes of analytic and bi-univalent functions, AIMS Mathematics 6(10) (2012), 10642 – 10651, DOI: 10.3934/math.2021618.

M. Darus and S. Singh, On some new classes of bi-univalent functions, Journal of Applied Mathematics, Statistics and Informatics 14(2) (2018), 19 – 26, DOI: 10.2478/jamsi-2018-0010.

S. S. Ding, Y. Ling and G. J. Bao, Some properties of a class of analytic functions, Journal of Mathematical Analysis and Applications 195(1) (1995), 71 – 81, DOI: 10.1006/jmaa.1995.1342.

P. L. Duren, Univalent Functions, Springer-Verlag, New York (1983).

B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Applied Mathematics Letters 24(9) (2011), 1569 – 1573, DOI: 10.1016/j.aml.2011.03.048.

M. Lewin, On a coefficient problem for bi-univalent functions, Proceedings of the American Mathematical Society 18 (1967), 63 – 68, DOI: 10.2307/2035225.

S. Porwal and M. Darus, On a new subclass of bi-univalent functions, Journal of the Egyptian Mathematical Society 21(3) (2013), 190 – 193, DOI: 10.1016/j.joems.2013.02.007.

H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters 23(10) (2010), 1188 – 1192, DOI: 10.1016/j.aml.2010.05.009.

H. Tang, N. Magesh, V. K. Balaji and C. Abirami, Coefficient inequalities for a comprehensive class of bi-univalent functions related with bounded boundary variation, Journal of Inequalities and Applications 2019 (2019), Article number: 237, DOI: 10.1186/s13660-019-2193-5.

Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Applied Mathematics and Computation 218(23) (2012), 11461 – 11465, DOI: 10.1016/j.amc.2012.05.034.

Downloads

Published

18-10-2023
CITATION

How to Cite

Patil, A., & Khairnar, S. M. (2023). Coefficient Bounds for Bi-Univalent Functions With Ruscheweyh Derivative and Sălăgean Operator. Communications in Mathematics and Applications, 14(3), 1161–1166. https://doi.org/10.26713/cma.v14i3.2383

Issue

Section

Research Article