Some Properties of Kenmotsu Manifolds Admitting a New Type of Semi-Symmetric Non-Metric Connection

Authors

DOI:

https://doi.org/10.26713/cma.v15i1.2368

Keywords:

Kenmotsu manifold, Semi-symmetric non-metric connection, Semi-symmetric manifold, Ricci semi-symmetric manifold, Locally \(\phi\)-symmetric Kenmotsu manifold, Curvature tensor, Ricci tensor, Einstein manifold

Abstract

In this paper, we study some properties of Kenmotsu manifolds admitting a semi-symmetric non-metric connection. Some curvature's properties of Kenmotsu manifolds that admits a semi-symmetric non-metric connection are obtained. Semi-symmetric, Ricci semi-symmetric and locally \(\phi\)-symmetric conditions for Kenmotsu manifolds with respect to semi-symmetric non-metric connection are also studied. It is proved that the manifold endowed with a semi-symmetric non-metric connection is regular. We obtain some conditions for semi-symmetric and Ricci semi-symmetric Kenmotsu manifolds endowed with semi-symmetric non-metric connection \(\widetilde{\nabla}\). It is further observed that the Ricci soliton of data \((g,\xi,\Theta)\) are expanding and shrinking respectively for semi-symmetric and Ricci semi-symmetric Kenmotsu manifolds admitting a semi-symmetric non-metric connection.

Downloads

Download data is not yet available.

References

N. S. Agashe and M. R. Chafle, A semi-symmetric non-metric connection on a Riemannian manifold, Indian Journal of Pure and Applied Mathematics 23 (1992), 399 – 409.

C. S. Bagewadi and G. Ingalahalli, Ricci solitons in Lorentzian α-Sasakian manifolds, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 28(1) (2012), 59 – 68, URL: https://www.emis.de/journals/AMAPN/vol28_1/8.html.

D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics (LNM, Vol. 509), Springer, Berlin – Heidelberg, viii + 148 pages (1976), DOI: 10.1007/BFb0079307.

S. K. Chaubey, On semi-symmetric non-metric connection, arXiv:1711.01035 [math.DG] (2007), 10 pages, DOI: 10.48550/arXiv.1711.01035.

M. M. Boothby and R. C. Wang, On contact manifolds, Annals of Mathematics 68 (1958), 421 – 450.

S. K. Chaubey and A. Yildiz, Riemannian manifolds admitting a new type of semisymmetric nonmetric connection, Turkish Journal of Mathematics 43(4) (2019), Article 7, DOI: 10.3906/mat-1902-2.

S. K. Chaubey and R. H. Ojha, On a semi-symmetric non-metric and quarter symmetric metric connections, Tensor, N.S. 70(2) (2008), 202 – 213.

S. K. Chaubey and R. H. Ojha, On a semi-symmetric non-metric connection, Filomat 26(2) (2012), 269 – 275, URL: https://www.jstor.org/stable/24895727.

S. Chaubey and S. K. Yadav, Study of Kenmotsu manifolds with semi-symmetric metric connection, Universal Journal of Mathematics and Applications 1(2) (2018), 89 – 97, DOI: 10.32323/ujma.650209.

S. K. Chaubey, Pankaj and S. K. Yadav, Projective curvature tensor of Riemannian manifolds admitting a projective semi-symmetric connection, Universal Journal of Mathematics and Applications 3(2) (2020), 78 – 85, DOI: 10.32323/ujma.650209.

U. C. De and G. Pathak, On 3-dimensional Kenmotsu manifolds, Indian Journal of Pure and Applied Mathematics 35 (2004), 159 – 165.

A. De, On Kenmotsu manifold, Bulletin of Mathematical Analysis and Applications 2(3) (2010), 1 –6, URL: https://www.emis.de/journals/BMAA/repository/docs/BMAA2-3-1.pdf.

U. C. De., Y. L. Han and P. B. Zhao, A special type of semi-symmetric non-metric connection on a Riemannian manifold, Facta Universitatis Niš: Series Mathematics and Informatics 31(2) (2016), 529 – 541, URL: http://casopisi.junis.ni.ac.rs/index.php/FUMathInf/article/view/1536.

A. Friedmann and A. Schouten, Über die Geometrie der halbsymmetrischen Übertragungen Mathematische Zeitschrift 21 (1924), 211 – 223, DOI: 10.12691/tjant-3-4-1.

S. Golab, On semi-symmetric and quarter symmetric linear connections, Tensor, N.S. 29 (1975), 249 – 254.

K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Mathematical Journal 24 (1972), 93 – 103, DOI: 10.2748/tmj/1178241594.

K. T. P. Kumar, C. S. Bagewadi and Venkatesha, On projective φ-symmetric K-contact manifold admitting quarter-symmetric metric connection, Differential Geometry-Dynamical Systems 13 (2011), 128 – 137.

R. S. Mishra and S. N. Pandey, On quarter-symmetric metric F-connections, Tensor, N.S. 34 (1980), 1 – 7.

C. Özgür and U.C. De, On the quasi-conformal curvature tensor of a Kenmotsu manifold, Mathematica Pannonica 17(2) (2006), 221 – 228, URL:https://eudml.org/doc/226507.

Pankaj, S.K. Chaubey and R. Prasad, Sasakian manifolds with admitting a non-symmetric non-metric connection, Palestine Journal of Mathematics 9(2) (2020), 698 – 710, URL: https://pjm.ppu.edu/sites/default/files/papers/PJM_May2020_698_to_710.pdf.

Pankaj, S.K. Chaubey and R. Prasad, Trans-Sasakian manifolds with respect to a non-symmetric non-metric connection, Global Journal of Advanced Research on Classical and Modern Geometries 7(1) (2018), 1 – 10.

S. C. Rastogi, On quarter-symmetric metric connection, Comptes rendus de l’Académie bulgare des Sciences 31 (1978), 811 – 814.

B.B. Sinha and A.K. Srivastava, Curvatures on Kenmotsu manifold, Indian Journal of Pure and Applied Mathematics 22(1) (1991), 23 – 28.

T. Takahashi, Sasakian φ-symmetric spaces, Tohoku Mathematical Journal 29 (1977), 91 – 113, DOI: 10.2748/tmj/1178240699.

M.M. Tripathi, A new connection in a Riemannian manifold, International Electronic Journal of Geometry 1(1) (2008), 15 – 24, URL: https://dergipark.org.tr/tr/download/article-file/741700.

M.M. Tripathi and N. Nakkar, On a semi-symmetric non-metric connection in a Kenmotsu manifold, Bulletin of the Calcutta Mathematical Society 16(4) (2001), 323 – 330.

K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, Vol. 3, World Scientific, Singapore (1985), DOI: 10.1142/0067.

K. Yano and T. Imai, Quarter-symmetric metric connections and their curvature tensor, Tensor, N.S. 38 (1982), 13 – 18.

Downloads

Published

24-04-2024
CITATION

How to Cite

Singh, A., Das, . L. S., Prasad, R., & Kumar, L. (2024). Some Properties of Kenmotsu Manifolds Admitting a New Type of Semi-Symmetric Non-Metric Connection. Communications in Mathematics and Applications, 15(1), 145–160. https://doi.org/10.26713/cma.v15i1.2368

Issue

Section

Research Article