The Sparing Number of the Cartesian Product of Certain Graphs

Authors

  • K. P. Chithra Naduvath Mana, Nandikkara, Thrissur 680301
  • K. A. Germina Department of Mathematics, School of Mathematical & Physical Sciences, Central University of Kerala, Kasaragod 671316
  • N. K. Sudev Department of Mathematics, Vidya Academy of Science & Technology, Thalakkottukara, Thrissur 680501

DOI:

https://doi.org/10.26713/cma.v5i1.231

Keywords:

Integer additive set-indexers, mono-indexed elements of a graphs, weak integer additive set-indexers, sparing number of a graph

Abstract

Let $\mathbb{N}_0$ be the set of all non-negative integers. An integer additive set-indexer (IASI) is defined as an injective function $f:V(G)\rightarrow \mathcal{P}(\mathbb{N}_0)$ such that the induced function $f^+:E(G) \rightarrow \mathcal{P}(\mathbb{N}_0)$ defined by $f^+ (uv) = f(u)+ f(v)$ is also injective, where $f(u)+f(v)$ is the sumset of $f(u)$ and $f(v)$ and $\mathcal{P}(\mathbb{N}_0)$ is the power set of $\mathbb{N}_0$. If $f^+(uv)=k~\forall~uv\in E(G)$, then $f$ is said to be a $k$-uniform integer additive set-indexer. An integer additive set-indexer $f$ is said to be a weak integer additive set-indexer if $|f^+(uv)|=max(|f(u)|,|f(v)|)~\forall ~ uv\in E(G)$. In this paper, we study about the sparing number of the cartesian product of two graphs

Downloads

Download data is not yet available.

References

B. D. Acharya (1983), Set-Valuations and Their Applications, MRI Lecture

notes in Applied Mathematics, The Mehta Research Institute of Mathematics and Mathematical Physics, New Delhi.

J. A. Bondy and U. S. R. Murty (2008), Graph Theory, Springer.

J. A. Gallian (2011). A Dynamic Survey of Graph Labelling, The Electronic Journal of Combinatorics (DS 16).

K. A. Germina and T. M. K. Anandavally (2012). Integer Additive Set-Indexers of a Graph: Sum Square Graphs, Journal of Combinatorics, Information and System Sciences, 37(2-4), 345-358.

K. A. Germina and N. K. Sudev (2013). On Weakly Uniform Integer Additive Set-Indexers of Graphs, Int. Math. Forum, 8(37), 1827-1834.

G. Hahn and C. Tardif (1997). Graph Homomorphism: Structure and Symmetries in Graph Symmetry: Algebraic Methods and Applications (Eds: G Hahn and G Sabidussi), Kluwer Acad. Pub., 107-166.

R. Hammack, W. Imrich and S. Klavzar (2011). Handbook of Product graphs, CRC

Press.

F. Harary (1994). Graph Theory, Addison-Wesley Publishing Company Inc.

W. Imrich and S. Klavzar (2000). Product Graphs: Structure and Recognition, Wiley.

W. Imrich, S. Klavzar and D. F. Rall (2008). Topics in Graph Theory: Graphs and Their Cartesian Products, A K Peters.

N. K. Sudev and K. A. Germina (2014). A Characterisation of Weak Integer Additive Set-Indexers of Graphs, ISPACS J. Fuzzy Set Valued Analysis, 2014, Article Id: jfsva-0189, 7 pages.

N. K. Sudev and K. A. Germina (2014). Weak Integer Additive Set-Indexers of Graph Operations, Global J. Math. Sciences: Theory and Practical, 6(1),25-36.

N. K. Sudev and K. A. Germina (2014). A Note on Sparing Number of Graphs, to

appear in Adv. and Applns. of Disc. Math.

N. K. Sudev and K. A. Germina (2014). Weak integer Additive Set-Indexers of

Graph Certain Products, submitted.

D. B. West (2001). Introduction to Graph Theory, Pearson Education Inc.

Downloads

Published

15-07-2014
CITATION

How to Cite

Chithra, K. P., Germina, K. A., & Sudev, N. K. (2014). The Sparing Number of the Cartesian Product of Certain Graphs. Communications in Mathematics and Applications, 5(1), 23–30. https://doi.org/10.26713/cma.v5i1.231

Issue

Section

Research Article