Some Applications of Soft \(\partial\)-Closed Sets in Soft Closure Spaces

Authors

DOI:

https://doi.org/10.26713/cma.v14i2.2303

Keywords:

Soft set, S∂-closed set, soft closure space, S∂-continuous maps, \(S\partial\)-\(T_{{{\frac{1}{2}}}}\) and \(S\partial\)-\(T^{*}_{{{\frac{1}{2}}}}\) spaces

Abstract

This study aims to present some applications of the notion of soft \(\partial\)-closed sets in soft closure spaces, which not only generalizes classical soft closed sets but also establishes a connection with soft \(g\)-closed sets. We discuss their basic characterizations of these sets and examine their implications in soft closure spaces. Furthermore, we apply these sets to introduce the notion of \(S\partial\)-continuous and \(S\partial\)-closed maps and present their various properties with some supported examples. Moreover, we propose two separation properties, which utilize the notion of \(S\partial\)-closed sets and explore their characteristics.

Downloads

Download data is not yet available.

References

H. Akta¸s and N. Çagman, Soft sets and soft groups, Information Sciences 177(13) (2007), 2726 – 2735, DOI: 10.1016/j.ins.2006.12.008.

J. Al-Mufarrij and S. Saleh, New results on soft generalized topological spaces, Journal of Mathematics and Computer Science 32(1) (2024), 43 – 53, DOI: 10.22436/jmcs.032.01.04.

T. M. Al-Shami, New soft structure: Infra soft topological spaces, Mathematical Problems in Engineering 2021 (2021), ID 3361604, DOI: 10.1155/2021/3361604.

C. Boonpok and J. Khampakdee, Between closed sets and generalized closed sets in closure spaces, Acta Mathematica Universitatis Ostraviensis 16(1) (2008), 3 – 14, http://dml.cz/dmlcz/137494.

N. Çagman and S. Enginoglu, Soft set theory and uni-int decision making, European Journal of Operational Research 207(2) (2010), 848 – 855, DOI: 10.1016/j.ejor.2010.05.004.

E. Cech, M. Katetov, J. Novák and A. Alois, Topological Papers of Eduard Cech, Academia, Prague (1968), 436 – 472.

S. Das and S. K. Samanta, Soft metric, Annals of Fuzzy Mathematics and Informatics 6(1) (2013), 77 – 94, URL: http://www.afmi.or.kr/papers/2013/Vol-06_No-01/AFMI-6-1(1--226)/AFMI-6-1(77--94)-J-120715R1.pdf.

S. T. Ekram and R. N. Majeed, Soft closure spaces, Journal of Physics: Conference Series 1591 (2020), 012076, DOI: 10.1088/1742-6596/1591/1/012076.

S. T. Ekram and R. N. Majeed, Soft continuous mappings in soft closure spaces, Iraqi Journal of Science 62 (2021), 2676 – 2684, DOI: 10.24996/ijs.2021.62.8.20.

D. N. Georgiou and A. C. Mergaritis, Soft set theory and topology, Applied General Topology 15(1) (2014), 93 – 109, DOI: 10.4995/agt.2014.2268.

R. Gowri and G. Jegadeesan, On soft Cech closure spaces, International Journal of Mathematical Trends and Technology 9 (2014), 122 – 127, DOI: 10.14445/22315373/IJMTT-V9P513.

R. Gowri and G. Jegadeesan, Soft ∂-closed sets in soft Cech closure space, Advances in Theoretical and Applied Mathematics 11(2) (2016), 105 – 114.

K. Kannan, Soft generalized closed sets in soft topological spaces, Journal of Theoretical and Applied Information Technology 37(1) (2012), 17 – 21, http://www.jatit.org/volumes/Vol37No1/2Vol37No1.pdf.

A. Kharal and B. Ahmad, Mapping on soft classes, New Mathematics and Natural Computation 7(3) (2011), 471 – 481, DOI: 10.1142/S1793005711002025.

N. Levine, Generalized closed sets in topology, Rendiconti del Circolo Matematico di Palermo 19 (1970), 89 – 96, DOI: 10.1007/BF02843888.

R. N. Majeed and S. T. Ekram, g-Closed soft sets in soft closure spaces, Journal of Physics: Conference Series 1879 (2021), 022128, DOI: 10.1088/1742-6596/1879/2/022128.

P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Computers & Mathematics with Applications 45(4-5) (2003), 555 – 562, DOI: 10.1016/S0898-1221(03)00016-6.

D. Molodtsov, Soft set theory – First results, Computers & Mathematics with Applications 37(4-5) (1999), 19 – 31, DOI: 10.1016/S0898-1221(99)00056-5.

S. Saleh, Some new properties on soft topological spaces, Annals of Fuzzy Mathematics and Informatics 17(3) (2019), 303 – 312, DOI: 10.30948/afmi.2019.17.3.303.

M. Shabir and M. Naz, On soft topological spaces, Computers & Mathematics with Applications 61(7) (2011), 1786 – 1799, DOI: 10.1016/j.camwa.2011.02.006.

Downloads

Published

18-09-2023
CITATION

How to Cite

Saleh, S., Flaih, L. R., & Jasim, K. F. (2023). Some Applications of Soft \(\partial\)-Closed Sets in Soft Closure Spaces. Communications in Mathematics and Applications, 14(2), 481–492. https://doi.org/10.26713/cma.v14i2.2303

Issue

Section

Research Article