Lacunary Statistical Convergence Sequence in Neutrosophic Metric Space

Authors

  • J. Johnsy Alagappa University,P.G. and Research Department of Mathematics, Raja Doraisingam Government Arts College (affiliated to Alagappa University), Sivagangai, Karaikudi, Tamilnadu, India https://orcid.org/0009-0007-7790-0321
  • M. Jeyaraman P.G. and Research Department of Mathematics, Raja Doraisingam Government Arts College (affiliated to Alagappa University), Sivagangai, Karaikudi, Tamilnadu, India https://orcid.org/0000-0002-0364-1845

DOI:

https://doi.org/10.26713/cma.v14i5.2293

Keywords:

Lacunary sequence, Neutrosophic normed linear space, Wijsman convergence, Cesaro summability, Sequence of sets

Abstract

Researchers describe the theory of Lacunary Strongly Convergence ( LSC ) and its application to sequences of sets in Neutrosophic Metric Spaces(NMS). We derive a conceptual connection between these ideas. In addition, that we have defined certain required and adequate criteria to ensure the similarity for Statistical Convergence(StC ) and Lacunary Statistical Convergence(LStC) sets for the sequence of NMS. We develop certain findings along with the idea of enhanced Cesaro summability in NMS.

Downloads

Download data is not yet available.

References

K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1) (1986), 87 – 96, DOI: 10.1016/S0165-0114(86)80034-3.

H. Fast, Sur la convergence statistique, Colloquium Mathematicae 2(3-4) (1951), 241 – 244, URL: https://eudml.org/doc/209960.

J.A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific Journal of Mathematics 160(1) (1993), 43 – 51, DOI: 10.2140/pjm.1993.160.43.

J.A. Fridy and C. Orhan, Lacunary statistical summability, Journal of Mathematical Analysis and Applications 173(2) (1993), 497 – 504, DOI: 10.1006/jmaa.1993.1082.

A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64(3) (1994), 395 – 399, DOI: 10.1016/0165-0114(94)90162-7.

A. Gökhan, M. Et and M. Mursaleen, Almost lacunary statistical and strongly almost lacunary convergence of sequences of fuzzy numbers, Mathematical and Computer Modelling 49(3-4) (2009), 548 – 555, DOI: 10.1016/j.mcm.2008.02.006.

C. Granados and A. Dhital, Statistical convergence of double sequences in neutrosophic normed spaces, Neutrosophic Sets and Systems 42 (2021), 333 – 344, DOI: 10.5281/zenodo.4718194.

M. Jeyaraman, H. Aydi and M. De La Sen, New results for multivalued mappings in hausdorff neutrosophic metric spaces, Axioms 11(12) (724), 1 – 14, DOI: 10.3390/axioms11120724.

M. Jeyaraman, A. Ramachandran and V.B. Shakila, Approximate fixed point theorems for weak contractions on neutrosophic normed spaces, Journal of Computational Mathematica 6(1) (2022), 134 – 158, DOI: 10.26524/cm127.

M. Jeyaraman, A.N. Mangayarkkarasi, V. Jeyanthi and R. Pandiselvi, Hyers-Ulam-Rassias stability for functional equation in neutrosophic normed spaces, International Journal of Neutrosophic Science 18(1) (2022), 127 – 143, DOI: 10.54216/IJNS.180111.

O. Ki¸si, I-Lacunary statistical convergence in intuitionistic fuzzy normed spaces, Afyon Kocatepe University Journal of Science and Engineering 20 (2020), 021301, 207 – 212, URL: https://dergipark.org.tr/en/download/article-file/1106964.

F. Nuray and B.E. Rhoades, Statistical convergence of sequences of sets, Fasciculi Mathematici 49 (2012), 87 – 99, URL: https://fasciculi-mathematici.put.poznan.pl/artykuly/49/FM49(2012)-NurayFRhoadesBE.pdf.

J.H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals 22(5) (2004), 1039 – 1046, DOI: 10.1016/j.chaos.2004.02.051.

R. Saadati and J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons & Fractals 27(2) (2006), 331 – 344, DOI: 10.1016/j.chaos.2005.03.019.

S. Sowndrarajan, M. Jeyaraman and F. Smarandache, Fixed point results for contraction theorem in neutrosophic metric spaces, Neutrosophic Sets and Systems 36(1) (2020), Article 23, 308 – 318, URL: https://digitalrepository.unm.edu/nss_journal/vol36/iss1/23/.

U. Ulusu and F. Nuray, Lacunary statistical convergence of sequences of sets, Progress in Applied Mathematics 4(2) (2012), 99 – 109, DOI: 10.3968/j.pam.1925252820120402.2264.

R.A. Wijsman, Convergence of sequences of convex sets, cones and functions – II, Transactions of the American Mathematical Society 123(1) (1966), 32 – 45, URL: https://www.ams.org/journals/tran/1966-123-01/.

L.A. Zadeh, Fuzzy sets, Inform and Control 8(3) (1965), 338 – 365, DOI: 10.1016/S0019-9958(65)90241-X.

Downloads

Published

31-12-2023
CITATION

How to Cite

Johnsy, J., & Jeyaraman, M. (2023). Lacunary Statistical Convergence Sequence in Neutrosophic Metric Space. Communications in Mathematics and Applications, 14(5), 1493–1506. https://doi.org/10.26713/cma.v14i5.2293

Issue

Section

Research Article