Hybrid Nanofluid Flow and Heat Transfer Past a Vertical Cylinder in the Presence of MHD and Heat Generation

Authors

DOI:

https://doi.org/10.26713/cma.v13i5.2260

Keywords:

Free convection, Vertical cylinder, Hybrid nanofluid, MHD, Heat generation, Finite difference numerical method

Abstract

The basic objective of this work is to investigate the effects of Lorentz force and internal heat generation on the unsteady flow of a hybrid nanofluid and the heat transfer caused by a moving semi-infinite vertical cylinder. The governing partial differential equations are solved numerically using a robust implicit finite difference approach with proper boundary conditions. The current work is corroborated by existing literature on the subject of special situations of the problem. The effects of the magnetic parameter, the Grashof number, and the heat generation parameter on the Nusselt number, the skin friction coefficient, as well as the velocity and temperature fields, have been investigated and graphed. The results obtained can be applied to a variety of engineering devices, such as chemical reactors, heat exchangers, and solar collectors.

Downloads

Download data is not yet available.

References

A. Aziz, A. Alsaedi, T. Muhammad and T. Hayat, Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk, Results in Physics 8 (2018), 785 – 792, DOI: 10.1016/j.rinp.2018.01.009.

J. A. R. Babu, K. K. Kumar and S. S. Rao, State-of-art review on hybrid nanofluids, Renewable and Sustainable Energy Reviews 77 (2017), 551 – 565, DOI: 10.1016/j.rser.2017.04.040.

B. Carnahan, H. A. Luther and J. O. Wilkes, Applied Numerical Methods John Wiley & Sons, New York (1969).

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press, London (1959), URL: https://www.sigmaquadrant.com/product/rare-1959-conduction-of-heat-in-solids-by-h-s-carslaw-j-c-jaeger-2nd-edition/.

A. J. Chamkha, I. V. Miroshnichenko and M. A. Sheremet, Numerical analysis of unsteady conjugate natural convection of hybrid water-based nanofluid in a semicircular cavity, Journal of Thermal Science and Engineering Applications 9 (2017), 041004, DOI: 10.1115/1.4036203.

S. K. Das, S. U. Choi, W. Yu and T. Pradeep, Nanofluids: Science and Technology, Wiley, Hoboken, (2007), URL: https://www.google.co.in/books/edition/Nanofluids/QpbOpMSpXpYC?hl=en&gbpv=1

S. S. U. Devi and S. P. A. Devi, Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating, Canadian Journal of Physics 94(5) (2016), 490 – 496, DOI: 10.1139/cjp-2015-0799.

P. Ganesan and H. P. Rani, Transient natural convection along vertical cylinder with heat and mass transfer, Heat and Mass Transfer 33 (1998), 449 – 455, DOI: 10.1007/s002310050214.

R. S. R. Gorla, S. Siddiqa, M. A. Mansour, A. M. Rashad and T. Salah, Heat source/sink effects on a hybrid nanofluid-filled porous cavity, Journal of Thermophysics and Heat Transfer 31(4) (2017), 847 – 857, DOI: 10.2514/1.T5085.

T. Hayat and S. Nadeem, Heat transfer enhancement with Ag–CuO/water hybrid nanofluid, Results in Physics 7 (2017), 2317 – 2324, DOI: 10.1016/j.rinp.2017.06.034.

S. Kakaç and A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids, International Journal of Heat and Mass Transfer 52(13-14) (2009), 3187 – 3196, DOI: 10.1016/j.ijheatmasstransfer.2009.02.006.

A. Kasaeian, R. Daneshazarian, O. Mahian, L. Kolsi, A. J. Chamkha, S. Wongwises and I. Pop, Nanofluid flow and heat transfer in porous media: A review of the latest developments, International Journal of Heat and Mass Transfer 107 (2017), 778 – 791, DOI: 10.1016/j.ijheatmasstransfer.2016.11.074.

J. Lin and H. Yang, A review on the flow instability of nanofluids, Applied Mathematics and Mechanics 40 (2019), 1227 – 1238, DOI: 10.1007/s10483-019-2521-9.

P. Loganathan, P. N. Chand and P. Ganesan, Radiation effects on an unsteady natural convective flow of a nanofluid past an infinite vertical plate, Nano 8(1) (2013), 1350001, DOI: 10.1142/S179329201350001X.

S. A. M. Mehryan, F. M. Kashkooli, M. Ghalambaz, A. J. Chamkha, Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity, Advanced Powder Technology 28(9) (2017), 2295 – 2305, DOI: 10.1016/j.apt.2017.06.011.

G. G. Momin, Experimental investigation of mixed convection with water-Al2O3 & hybrid nanofluid in inclined tube for laminar flow, International Journal of Scientific & Technology Research 2(12) (2013), 195 – 202, URL: https://www.ijstr.org/final-print/dec2013/Experimental-Investigation-Of-Mixed-Convection-With-Water-al2o3-Hybrid-Nanofluid-In-Inclined-Tube-For-Laminar-Flow.pdf.

R. Nimmagadda and K. Venkatasubbaiah, Conjugate heat transfer analysis of micro channel using novel hybrid nanofluids (Al2O3 + Ag/Water), European Journal of Mechanics - B/Fluids 52 (2015), 19 – 27, DOI: 10.1016/j.euromechflu.2015.01.007.

Md. J. Nine, B. Munkhbayar, M. Sq. Rahman, H. Chung and H. Jeong, Highly productive synthesis process of well dispersed Cu2O and Cu/Cu2O nanoparticles and its thermal characterization, Materials Chemistry and Physics 141(2-3) (2013), 636 – 642, DOI: 10.1016/j.matchemphys.2013.05.032.

A. T. Olatundun and O. D. Makinde, Analysis of Blasius flow of hybrid nanofluids over a convectively heated surface, Defect and Discusion Forum 377 (2017), 29 – 41, DOI: 10.4028/www.scientific.net/DDF.377.29.

V. Rajesh, A. J. Chamkha, Ch. Sridevi and A. F. Al-Mudhaf, A numerical investigation of transient MHD free convective flow of a nanofluid over a moving semi-infinite vertical cylinder, Engineering Computations 34(5) (2017), 1393 – 1412, DOI: 10.1108/EC-03-2016-0090.

V. Rajesh, O. A. Beg and M. P. Mallesh, Transient nanofluid flow and heat transfer from a moving vertical cylinder in the presence of thermal radiation: Numerical study, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems 230(1) (2016), 3 – 16, DOI: 10.1177/1740349914548712.

J. Sarkar, P. Ghosh and A. Adil, A review on hybrid nanofluids: Recent research, development and applications, Renewable and Sustainable Energy Reviews 43 (2015), 164 – 177, DOI: 10.1016/j.rser.2014.11.023.

H. Schlichting and K. Gersten, Boundary-Layer Theory, Springer-Verlag, New York, (2001), DOI: 10.1007/978-3-642-85829-1.

S. Suresh, K. P. Venkitaraj, P. Selvakumar and M. Chandrasekar, Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer, Experimental Thermal and Fluid Science 38 (2012), 54 – 60, DOI: 10.1016/j.expthermflusci.2011.11.007.

S. Suresh, K. P. Venkitaraj, P. Selvakumar and M. Chandrasekar, Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects 388(1-3) (2011), 41 – 48, DOI: 10.1016/j.colsurfa.2011.08.005

B. Takabi, A. M. Gheitaghy and P. Tazraei, Hybrid water-based suspension of Al2O3 and Cu nanoparticles on laminar convection effectiveness, Journal of Thermophysics and Heat Transfer 30(3) (2016), 523 – 532, DOI: 10.2514/1.T4756.

T. Tayebi and A. J. Chamkha, Natural convection enhancement in an eccentric horizontal cylindrical annulus using hybrid nanofluids, Numerical Heat Transfer, Part A: Applications – An International Journal of Computation and Methodology 71 (2017), 1159 – 1173, DOI: 10.1080/10407782.2017.1337990.

R. K. Tiwari and M. K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, International Journal of Heat and Mass Transfer 50(9-10) (2007), 2002 – 2018, DOI: 10.1016/j.ijheatmasstransfer.2006.09.034.

X.-Q. Wang and A. S. Mujumdar, A review on nanofluids — part I: theoretical and numerical investigations, Brazilian Journal of Chemical Engineering 25 (2008), 613 – 630, DOI: 10.1590/S0104-66322008000400001.

X.-Q. Wang and A. S. Mujumdar, A review on nanofluids — part II: experiments and applications, Brazilian Journal of Chemical Engineering 25 (2008), 631 – 648, DOI: 10.1590/S0104-66322008000400002.

X.-Q. Wang and A. S. Mujumdar, Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences 46(1) (2007), 1 – 19, DOI: 10.1016/j.ijthermalsci.2006.06.010.

Downloads

Published

30-12-2022
CITATION

How to Cite

Rajesh, V., Sowjanya, G. B., & Chamkha, A. (2022). Hybrid Nanofluid Flow and Heat Transfer Past a Vertical Cylinder in the Presence of MHD and Heat Generation. Communications in Mathematics and Applications, 13(5), 1489–1508. https://doi.org/10.26713/cma.v13i5.2260

Issue

Section

Research Article