Some Aspects of Theory of Schrödinger Operators on Riemannian Manifold

Authors

DOI:

https://doi.org/10.26713/cma.v13i5.2258

Keywords:

Manifolds, Spectral theory, Laplacian, Spectral geometry

Abstract

This paper deals with a given Riemannian manifold \(\mathcal{M}\). One of the main tasks is description of spectrum of several classes of Schrödinger operator \(P=\frac{-h^{2}}{2}\Delta _{g}+V\) where \(\Delta _{g}\) is Laplace Beltrami operator and \(V\) is potential on manifold. We illustrate the inverse and direct problems of \(\Delta _{g}\) and the way to discover the geometry of Riemannian manifold from spectral data.

Downloads

Download data is not yet available.

References

F. A. Berezin and M. A. Shubin, The Schrödinger Equation, Springer Science+Business Media, B.V., 555 pages (1991).

M. Braverman, O. Milatovic and M. Shubin, Essential self-adjointness of Schrödinger-type operators on manifolds, Russian Mathematical Surveys 57(4) (2002), 641, DOI: 10.1070/RM2002v057n04ABEH000532.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 1st edition, Springer, New York, xiv + 600 (2011), DOI: 10.1007/978-0-387-70914-7.

P. Cartier, Problèmes mathématiques de la théorie quantique des champs, Séminaire N. Bourbaki 23(388) (1970-71), 107 – 122, URL: http://www.numdam.org/article/SB_1970-1971__13__107_0.pdf.

I. Chavel and E. A. Feldman, Spectra of domains in compact manifolds, Journal of Functional Analysis 30(2) (1978), 198 – 222, DOI: 10.1016/0022-1236(78)90070-8.

I. Chavel and E. A. Feldman, Spectra of manifolds less a small domain, Duke Mathematical Journal 56(2) (1988), 399 – 414, DOI: 10.1215/S0012-7094-88-05617-7.

S.-Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Mathematische Zeitschrift 143(3) (1975), 289 – 297, DOI: 10.1007/BF01214381.

P. R. Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations, Journal of Functional Analysis 12(4) (1973), 401 – 414, DOI: 10.1016/0022-1236(73)90003-7.

H. O. Cordes, Spectral Theory of Linear Differential Operators and Comparison Algebras, London Mathematical Society Lecture Note Series, Vol. 76, Cambridge University Press (1987), DOI: 10.1017/CBO9780511662836.

G. Courtois, Spectrum of manifolds with holes, Journal of Functional Analysis 134(1) (1995), 194 – 221, URL: 10.1006/jfan.1995.1142.

M. G. Dabkowski and M. T. Lock, The lowest eigenvalue of Schrödinger operators on compact manifolds, Potential Analysis 50(4) (2019), 621 – 630, DOI: 10.1007/s11118-018-9698-2.

K. Friedrichs, Spektraltheorie halbbeschränkter operatoren und anwendung auf die spektralzerlegung von differentialoperatoren, Mathematische Annalen 109(1) (1934), 465 – 487, DOI: 10.1007/BF01449150.

F. Gesztesy and Z. Zhao, Domain perturbations, Brownian motion, capacities, and ground states of Dirichlet Schrödinger operators, Mathematische Zeitschrift 215(1) (1994), 143 – 150, DOI: 10.1007/BF02571703.

C. S. Gordon, Survey of isospectral manifolds, Chapter 6 of Handbook of Differential Geometry, Vol. 1, F. J. E. Dillen and L. C. A. Verstraelen (editors), 747 – 778, North-Holland, Amsterdam (2000), DOI: 10.1016/S1874-5741(00)80009-6.

M. Kac, Can one hear the shape of a drum?, The American Mathematical Monthly 73(4-2) (1966), 1 – 23, URL: https://doi.org/10.2307/2313748.

M. Kac, Probabilistic methods in some problems of scattering theory, The Rocky Mountain Journal of Mathematics 4(3) (1974), 511 – 537, URL: https://www.jstor.org/stable/44236400.

T. Kato, Perturbation Theory for Linear Operators, Vol. 132, Springer Science & Business Media, xvi+591 (1966), URL: https://books.google.co.in/books?hl=en&lr=&id=k-7nCAAAQBAJ&oi=fnd&pg=PR17&ots=w7NIsbgcAF&sig=gXdJnJt3n8FBgucXGDUGutO126w#v=onepage&q&f=false.

T. Kato, Schrödinger operators with singular potentials, Israel Journal of Mathematics 13(1) (1972), 135 – 148, DOI: 10.1007/BF02760233.

L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, 2nd edition, (Course of Theoretical Physics, Vol. 3), Peragamon Press (1965), URL: https://power1.pc.uec.ac.jp/~toru/notes/LandauLifshitz-QuantumMechanics.pdf.

J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proceedings of the National Academy of Sciences of the United States of America 51(4) (1964), 542, DOI: 10.1073/pnas.51.4.542.

I. M. Oleinik, On the connection of the classical and quantum mechanical completeness of a potential at infinity on complete Riemannian manifolds, Mathematical Notes 55(4) (1994), 380 – 386, DOI: 10.1007/BF02112477.

J. Rauch and M. Taylor, Potential and scattering theory on wildly perturbed domains, Journal of Functional Analysis 18(1) (1975), 27 – 59, DOI: 10.1016/0022-1236(75)90028-2.

M. Reed and B. Simon, Methods of Modern Mathematical Physics, II: Fourier Analysis, Self-Adjointness, Academic Press, New York — San Francisco — London (1975), URL: https://books.google.co.in/books?hl=en&lr=&id=zHzNCgAAQBAJ&oi=fnd&pg=PP1&ots=RbLz1r5glE&sig=gvmVSKUPY8LqR5j9VwenkGxdlM8#v=onepage&q&f=false.

E. Schrödinger, Space-time Structure, Cambridge University Press, 119 pages (first published 1950, reprinted 1997), URL: http://strangebeautiful.com/other-texts/schrodinger-st-struc.pdf.

T. Sunada, Riemannian coverings and isospectral manifolds, Annals of Mathematics 121(1) (1985), 169 – 186, URL: https://www.jstor.org/stable/1971195.

Downloads

Published

30-12-2022
CITATION

How to Cite

Diyab, F., & Reddy, B. S. (2022). Some Aspects of Theory of Schrödinger Operators on Riemannian Manifold. Communications in Mathematics and Applications, 13(5), 1475–1487. https://doi.org/10.26713/cma.v13i5.2258

Issue

Section

Research Article