Common Fixed Point Theorems for OWC Maps Satisfying Property (E.A) in S-Metric Spaces Using an Inequality Involving Quadratic Terms

Authors

DOI:

https://doi.org/10.26713/cma.v13i5.2250

Keywords:

Coincidence points, Common fixed points, Property (E.A), Occasional weak compatibility, Common property (E.A)

Abstract

In this study, using a quadratic inequality, we prove certain fixed point theorems for four pair wise occasionally weakly compatible maps. In fact, we slightly modify the inequality used by G. V. R. Babu et al. [3, 4] and apply it to S-metric spaces. We also give an example to justify the relevance and reliability of our results.

Downloads

Download data is not yet available.

References

M. Aamri and D. El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, Journal of Mathematical Analysis and Applications 270(1) (2002), 181 – 188, DOI: 10.1016/S0022-247X(02)00059-8.

M. A. Al-Thagafi and N. Shahzad, Generalized I-nonexpansive selfmaps and invariant approximations, Acta Mathematica Sinica, English Series 24(5) (2008), 867 – 876, DOI: 10.1007/s10114-007-5598-x.

G. V. R. Babu and G. N. Alemayehu, Common fixed point theorems for occasionally weakly compatible maps satisfying property (E.A) using an inequality involving quadratic terms, Applied Mathematics Letters 24(6) (2011), 975 – 981, DOI: 10.1016/j.aml.2011.01.008

G. V. R. Babu and M. V. R. Kameswari, Common fixed point theorems for weakly compatible maps using a contraction quadratic inequality, Advanced Studies in Contemporary Mathematics (Kyungshang) 9(2) (2004), 139 – 152, http://www.jangjeon.or.kr/etc/view.html?id=143.

G. Jungck, Commuting mappings and fixed points, The American Mathematical Monthly 83(4) (1976), 261 – 263, DOI: 10.1080/00029890.1976.11994093

G. Jungck, Compatible mappings and common fixed points, International Journal of Mathematics and Mathematical Sciences 9(4) (1986), 771 – 779, DOI: 10.1155/S0161171286000935

G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian Journal of Pure and Applied Mathematics 29 (1998), 227 – 238.

Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and convex Analysis 7(2) (2006), 289 – 297, URL: http://yokohamapublishers.jp/online2/opjnca/vol7/p289.html.

S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Matematicki Vesnik 64(249) (2012), 258 – 266, URL: https://eudml.org/serve/253803/accessibleLayeredPdf/0.

S. Sedghi, N. Shobe and H. Zhou, A common fixed point theorem in D∗-metric spaces, Fixed Point Theory and Applications 2007 (2007), 27906, 13 pages, URL: https://fixedpointtheoryandalgorithms.springeropen.com/articles/10.1155/2007/27906.

S. Sedghi and N. V. Dung, Fixed point theorems on S-metric spaces, Matematicki Vesnik 255 (2014), 113 – 124, URL: https://eudml.org/serve/261245/accessibleLayeredPdf/0.

K. Ta¸s, M. Telci and B. Fisher, Common fixed point theorems for compatible mappings, International Journal of Mathematics and Mathematical Sciences 19(3) (1996), 451 – 456, DOI: 10.1155/S0161171296000646.

Y. Liu, J. Wu and Li. Zhixiang, Common fixed points of single-valued and multivalued maps, International Journal of Mathematics and Mathematical Sciences 2005(19) (2005), 3045 – 3055, DOI: 10.1155/IJMMS.2005.3045.

Downloads

Published

30-12-2022
CITATION

How to Cite

Rao, V. S., & Dixit, U. (2022). Common Fixed Point Theorems for OWC Maps Satisfying Property (E.A) in S-Metric Spaces Using an Inequality Involving Quadratic Terms. Communications in Mathematics and Applications, 13(5), 1393–1404. https://doi.org/10.26713/cma.v13i5.2250

Issue

Section

Research Article