Stability of a Quadratic-Reciprocal Functional Equation: Direct Method

Authors

DOI:

https://doi.org/10.26713/cma.v14i5.2224

Keywords:

Quadratic reciprocal functional equation, Ulam-Hyers stability, Fuzzy Banach algebra

Abstract

In this paper, we establish the Hyers-Ulam, Hyers-Ulam-Rassias, generalized Hyers-Ulam-Rassias, and Rassias stability results of the quadratic-reciprocal functional equation:
\begin{align*}
f(x+y)=\frac{f(x)f(y)}{f(x)+f(y)+2\sqrt{f(x)f(y)}}
\end{align*}
connected with fuzzy homomorphisms and fuzzy derivations between fuzzy Banach algebras using direct method.

Downloads

Download data is not yet available.

References

T. Aoki, On the stability of the linear transformation in Banach spaces, Journal of the Mathematical Society of Japan 2(1-2) (1950), 64 – 66, DOI: 10.2969/jmsj/00210064.

M. Arunkumar and S. Karthikeyan, Solution and stability of n-dimensional additive functional equation, International Journal of Applied Mathematics 25(2) (2012), 163 – 174.

M. Arunkumar and S. Karthikeyan, Solution and intuitionistic fuzzy stability of n-dimensional quadratic functional equation: Direct and fixed point methods, International Journal of Advanced Mathematical Sciences 2(1) (2014), 21 – 33, DOI: 10.14419/ijams.v2i1.1498.

M. Arunkumar, S. Karthikeyan and S. Vijayakumar, A fixed point approach to the stability of reciprocal quadratic functional equation in intuitionistic fuzzy Banach Algebras, International Journal of Current Advanced Research 7(1) (2018), 143 – 150, URL: https://journalijcar.org/sites/default/files/issue-files/A25.pdf.

A. Bahyrycz, J. Brzd˛ek, E.-S. El-hady and Z. Le´sniak, On Ulam stability of functional equations in 2-normed spaces – A survey, Symmetry 13(11) (2021), 2200, DOI: 10.3390/sym13112200.

Z. Gajda, On stability of additive mappings, International Journal of Mathematics and Mathematical Sciences 14 (1991), Article ID 817959, DOI: 10.1155/S016117129100056X.

P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, Journal of Mathematical Analysis and Applications 184(3) (1994), 431 – 436, DOI: 10.1006/jmaa.1994.1211.

D. H. Hyers, On the stability of the linear functional equation, Proceedings of the National Academy of Sciences 27(4) (1941), 222 – 224, DOI: 10.1073/pnas.27.4.222.

S. Karthikeyan, C. Park, P. Palani and T. R. K. Kumar, Stability of an additive-quartic functional equation in modular spaces, Journal of Mathematics and Computer Science 26(1) (2022), 22 – 40, DOI: 10.22436/jmcs.026.01.04.

S. Karthikeyan, J. M. Rassias, S. Vijayakumar and K. Sakthivel, Stability results of additivequadratic n-dimensional functional equation: Fixed point approach, Communications in Mathematics and Applications 13(2) (2022), 461 – 476, DOI: 10.26713/cma.v13i2.1757

S. Karthikeyan, M. Suresh, G. Ganapathy, V. B. Priya and A. J. Bala, Stability of n-dimensional mixed type quadratic and cubic functional equation, Journal of Mathematics and Computer Science 31(2) (2023), 214 – 224, DOI: 10.22436/jmcs.031.02.07.

A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems 12(2) (1984), 143 – 154, DOI: 10.1016/0165-0114(84)90034-4.

I. Kramosil and J. Michálek, Fuzzy metric and statistical metric spaces, Kybernetica 11(5) (1975), 336 – 344, URL: https://www.kybernetika.cz/content/1975/5/336/paper.pdf.

A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems 159(6) (2008), 720 – 729, DOI: 10.1016/j.fss.2007.09.016.

A. K. Mirmostafaee, M. Mirzavaziri and M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 159(6) (2008), 730 – 738, DOI: 10.1016/j.fss.2007.07.011.

A. K. Mirmostafaee and M. S. Moslehian, Fuzzy almost quadratic functions, Results in Mathematics 52 (1-2) (2008), 161 – 177, DOI: 10.1007/s00025-007-0278-9.

C. Park, Fixed points and stability of the Cauchy-Jensen functional inequality in fuzzy Banach algebras, Applied Mathematics Letters 24(12) (2011), 2024 – 2029, DOI: 10.1016/j.aml.2011.05.036.

J. M. Rassias, On approximately of approximately linear mappings by linear mappings, Journal of Functional Analysis 46(1) (1982), 126 – 130, DOI: 10.1016/0022-1236(82)90048-9.

J. M. Rassias, M. Arunkumar and S. Karthikeyan, Lagrange’s quadratic functional equation connected with homomorphisms and derivations on Lie C∗-algebras: Direct and fixed point methods, Malaya Journal of Matematik S(1) (2015), 228 – 241, URL: https://www.malayajournal.org/articles/paper22.pdf.

J. M. Rassias, M. Arunkumar and S. Karthikeyan, Stability of DGC’s quadratic functional equation in Quasi-Banach Algebras: Direct and fixed point methods, International Journal of Pure and Applied Mathematical Sciences 10 (1) (2017), 41 – 67.

Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proceedings of the American Mathematical Society 72 (1978), 297 – 300, DOI: 10.2307/2042795.

K. Ravi, M. Arunkumar and J. M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematics and Statistics 3 (2008), 36 – 47.

S. M. Ulam, Problems in Modern Mathematics, Science Editions, John Wiley & Sons, Inc., New York, xvii + 150 pages (1964).

J.-Z. Xiao and X.-H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets and Systems 133(3) (2003), 389 – 399, DOI: 10.1016/S0165-0114(02)00274-9.

Downloads

Published

31-12-2023
CITATION

How to Cite

Karthikeyan, S., Suresh, M., Priya, V. B., & Palani, P. (2023). Stability of a Quadratic-Reciprocal Functional Equation: Direct Method. Communications in Mathematics and Applications, 14(5), 1615–1624. https://doi.org/10.26713/cma.v14i5.2224

Issue

Section

Research Article