On the Bounded Region for the Stratified Shear Flows in \(\beta\)-plane

Authors

DOI:

https://doi.org/10.26713/cma.v14i2.2213

Keywords:

Shear flows, Incompressible fluids, Stratified fluids, Inviscid fluids, β-plane

Abstract

We consider incompressible, inviscid stratified shear flows in \(\beta\)-plane. We obtained a bounded and unbounded instability regions which depends on various parameters, and obtained a criterion for stability. Also, we obtained an upper bound for the growth rate, amplification factor of an unstable mode.

Downloads

Download data is not yet available.

References

P. G. Darzin and W. H. Reid, Hydrodynamic Stability, Cambridge University Press, Cambridge, 539 pages (1981).

J. R. Gupta, R. G. Shandil and S. D. Rana, On the limitations of the complex wave velocity in the instability problem of heterogeneous shear flows, Journal of Mathematical Analysis and Applications 144(2) (1989), 367 – 376, DOI: 10.1016/0022-247X(89)90341-7.

F. J. Hickernell, An upper bound on the growth rate of a linear instability in a homogeneous shear flow, Studies in Applied Mathematics 72(1) (1985), 87 – 93, DOI: 10.1002/sapm198572187.

L. N. Howard, Note on a paper of John W. Miles, Journal of Fluid Mechanics 10(4) (1961), 509 – 512, DOI: 10.1017/S0022112061000317.

G. T. Kochar and R. K. Jain, Note on Howard’s semicircle theorem, Journal of Fluid Mechanics 91(3) (1979), 489 – 491, DOI: 10.1017/S0022112079000276.

H.-L. Kuo, Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere, Journal of the Atmospheric Sciences 6 (1949), 105 – 122, DOI: 10.1175/1520-0469(1949)006<0105:DIOTDN>2.0.CO;2.

S. Lavanya, V. Ganesh and G. V. R. Reddy, Bounds on the growth rate for the Kuo problem Journal of Applied Mathematics and Informatics 41(2) (2023), 363 – 372, https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002941344.

S. Lavanya, V. Ganesh and G. V. R. Reddy, On the parabolic instability region for Kuo problem, in: Advances in Mathematical Modelling, Applied Analysis and Computation, J. Singh, G. A. Anastassiou, D. Baleanu, C. Cattani and D. Kumar (editors), Lecture Notes in Networks and Systems, Vol. 415, pp. 311 – 317, Springer, Singapore (2023), DOI: 10.1007/978-981-19-0179-9_18.

R. D. Lindzen, Planetary waves on beta-planes, Monthly Weather Review 95 (1967), 441 – 451, DOI: 10.1175/1520-0493(1967)095<0441:PWOBP>2.3.CO;2.

J. H. Miles, On the stability of heterogeneous shear flows, Journal of Fluid Mechanics 10(4) (1961), 496 – 508, DOI: 10.1017/S0022112061000305.

M. Padmini and M. Subbiah, Note on Kuo’s Problem, Journal of Mathematical Analysis and Applications 173(2) (1993), 659 – 665, DOI: 10.1006/jmaa.1993.1097.

J. Pedlosky, Geophysical Fluid Dynamics, 2nd edition, Springer-Verlag, New York, xiv + 710 pages (1979), DOI: 10.1007/978-1-4612-4650-3.

P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows, Applied Mathematical Sciences series, Vol. 142, Springer, New York (2000).

R. Thenmozhy and N. Vijayan, On the linear stability of shear flows in the β-plane, International Journal of Mathematics Trends and Technology 66(6) (2020), 10 – 16, DOI: 10.14445/22315373/IJMTT-V66I6P502.

C.-S. Yih, Stratified Flows, Academic Press (1981).

Downloads

Published

18-09-2023
CITATION

How to Cite

Lavanya, S., Ganesh, V., & Reddy, G. V. R. (2023). On the Bounded Region for the Stratified Shear Flows in \(\beta\)-plane. Communications in Mathematics and Applications, 14(2), 605–617. https://doi.org/10.26713/cma.v14i2.2213

Issue

Section

Research Article