On Nonlinear Fractional Relaxation Differential Equations

Authors

DOI:

https://doi.org/10.26713/cma.v14i2.2212

Keywords:

Fixed points, Fractional relaxation differential equations, Mittag-Leffler, Existence, Uniqueness

Abstract

In this paper, by using the Krasnoselskii fixed point theorem and the Banach fixed point theorem, we prove the existence and uniqueness of solutions for a class of nonlocal Cauchy problem for nonlinear Caputo fractional relaxation differential equations. Finally, one illustrative example is given to demonstrate our results.

Downloads

Download data is not yet available.

References

A. Ardjouni and A. Djoudi, Existence and uniqueness of positive solutions for first-order nonlinear Liouville–Caputo fractional differential equations, São Paulo Journal of Mathematical Sciences 14(1) (2020), 381 – 390, DOI: 10.1007/s40863-019-00147-2.

Z. Bai, S. Zhang, S. Sun and C. Yin, Monotone iterative method for fractional differential equations, Electronic Journal of Differential Equations 2016(6) (2016), 1 – 8, URL: https://ejde.math.txstate.edu/Volumes/2016/06/bai.pdf.

D. Baleanu and A. M. Lopes, Handbook of Fractional Calculus with Applications, Vol. 7, Applications in Engineering, Life and Social Sciences, Part A, De Gruyter, Boston (2019), DOI: 10.1515/9783110571905.

D. Baleanu, Z. B. Guvenc and J. A. T. Machado (editors), New Trends in Nanotechnology and Fractional Calculus Applications, 1st edition, Springer, New York, xi + 531 pages (2010), DOI: 10.1007/978-90-481-3293-5.

M. Benchohra, S. Bouriah and M. A. Darwish, Nonlinear boundary value problem for implicit differential equations of fractional order in Banach spaces, Fixed Point Theory 18(2) (2017), 457 – 470, DOI: 10.24193/fpt-ro.2017.2.36.

L. Byszewski, Theorem about existence and uniqueness of continuous solution of nonlocal problem for nonlinear hyperbolic equation, Applicable Analysis 40(2-3) (1991), 173 – 180, DOI: 10.1080/00036819108840001.

L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, Journal of Mathematical Analysis and Applications 162(2) (1991), 494 – 505, DOI: 10.1016/0022-247X(91)90164-U.

A. Chidouh, A. Guezane-Lakoud and R. Bebbouchi, Positive solutions of the fractional relaxation equation using lower and upper solutions, Vietnam Journal of Mathematics 44 (2016), 739 – 748, DOI: 10.1007/s10013-016-0192-0.

M. Concezzi and R. Spigler, Some analytical and numerical properties of the Mittag-Leffler functions, Fractional Calculus and Applied Analysis 18 (2015), 64 – 94, DOI: 10.1515/fca-2015-0006.

D. Dhaigude and B. Rizqan, Existence and uniqueness of solutions of fractional differential equations with deviating arguments under integral boundary conditions, Kyungpook Mathematical Journal 59(1) (2019), 191 – 202, DOI: 10.5666/KMJ.2019.59.1.191.

V. V. Kharat, S. Tate and A. R. Reshimkar, Some existence results on implicit fractional differential equations, Filomat 35(12) (2021), 4257 – 4265, DOI: 10.2298/FIL2112257K.

A. A. Kilbas, H. M. Srivastava and J. J. Trujilio, Theory and Applications of Fractional Differential Equations, Vol. 204, North Holland Mathematics Studies book series, x + 540 pages (2006), URL: https://www.sciencedirect.com/bookseries/north-holland-mathematics-studies/vol/204/suppl/C.

A. Lachouri, A. Ardjouni and A. Djoudi, Initial value problems for nonlinear Caputo fractional relaxation differential equations, Khayyam Journal of Mathematics 8(1) (2022), 86 – 94, URL: https://www.kjm-math.org/article_144162_400a3b982004f69162765306642fd13f.pdf.

V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Analysis: Theory, Methods & Applications 69(8) (2008), 2677 – 2682, DOI: 10.1016/j.na.2007.08.042.

S. Peng and J. Wang, Cauchy problem for nonlinear fractional differential equations with positive constant coefficient, Journal of Applied Mathematics and Computing 51 (2016), 341 – 351, DOI: 10.1007/s12190-015-0908-4.

L. Petras, Handbook of Fractional Calculus with Applications: Applications in Control, Vol. 6, 1st Edition, De Gruyter (2019).

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, USA (1999).

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gondon and Breach Science Publishers, Yverdon (1993).

A. Seemab and M. U. Rehman, Existence and stability analysis by fixed point theorems for a class of non-linear Caputo fractional differential equations, Dynamic Systems and Applications 27(3) (2018), 445 – 456, DOI: 10.12732/dsa.v27i3.1.

D. R. Smart, Fixed Point Theorems, Cambridge Tracts in Mathematics, Cambridge University Press, London – New York (1974).

S. Tate and H. T. Dinde, Boundary value problems for nonlinear implicit fractional differential equations, Journal Nonlinear Analysis and Application 2019(2) (2019), 29 – 40, URL: https://d-nb.info/1202190936/34.

S. Tate and H. T. Dinde, Existence and uniqueness results for nonlinear implicit fractional differential equations with non local conditions, Palestine Journal of Mathematics 9(1) (2020), 212 – 219, URL: https://pjm.ppu.edu/paper/635.

S. Xinwei and L. Landong, Existence of solution for boundary value problem of nonlinear fractional differential equation, Applied Mathematics – A Journal of Chinese Universities 22 (2007), 291 – 298, DOI: 10.1007/s11766-007-0306-2.

Downloads

Published

18-09-2023
CITATION

How to Cite

Tate, S., Kharat, V. V., & Gandhi, M. A. (2023). On Nonlinear Fractional Relaxation Differential Equations. Communications in Mathematics and Applications, 14(2), 675–683. https://doi.org/10.26713/cma.v14i2.2212

Issue

Section

Research Article