On the Square Free Detour Number of Windmill Graphs

Authors

DOI:

https://doi.org/10.26713/cma.v14i5.2194

Keywords:

Square free detour number, Connected square free detour number, Vertex square free detour number

Abstract

The set \(S\) of vertices is said to be a square free detour set of \(G^*=( V^*,\,E^* )\) if \(I_{D_{_{ \square f}} } [S]=V^*\). The square free detour number of \(G^*\) is the cardinality of the minimum proper square free detour subset of \(V^*\). The square free detour number \(dn_{\square f} (G^*)\), the connected square free detour number \(cdn_{_{\square f} }(G^*)\) and the vertex square free detour number \(dn_{_{\square f_u} }(G^*)\) of \(G^*\) are defined. Also, we determine the square free detour number, the connected square free detour number and the vertex-square free detour number of windmill graphs.

Downloads

Download data is not yet available.

References

M.A. Ali and A.A. Ali, The connected detour numbers of special classes of connected graphs, Journal of Mathematics 2019 (2019), Article ID 8272483, 9 pages, DOI: 10.1155/2019/8272483.

S. Arumugam, P. Balakrishnan, A.P. Santhakumaran and P. Titus, The upper connected vertex detour monophonic number of a graph, Indian Journal of Pure and Applied Mathematics 49 (2018), 365 – 379, DOI: 10.1007/s13226-018-0274-7.

G. Chartrand, G.L. Johns and P. Zhang, The detour number of a graph, Utilitas Mathematica 64 (2003), 97 – 113, URL: http://utilitasmathematica.com/index.php/Index/article/view/277.

G. Chartrand, P. Zhang and T.W. Haynes, Distance in graphs – taking the long view, Akce International Journal of Graphs and Combinatorics 1 (2004), 1 – 13, DOI: 10.1080/09728600.2004.12088775.

M. Elakkiya and K. Abhishek, Detour homometric number of a graph, Journal of Physics: Conference Series 1767 (2021), 012009, DOI: 10.1088/1742-6596/1767/1/012009.

J. John and V.R.S. Kumar, The open detour number of a graph, Discrete Mathematics, Algorithms and Applications 13(1) (2021), 2050088, DOI: 10.1142/S1793830920500883.

K.R.S. Narayan and M.S. Sunitha, Detour eccentric and detour distance degree sequences in graphs, Discrete Mathematics, Algorithms and Applications 7(3) (2015), 1550022, DOI: 10.1142/S1793830915500226.

G.P. Pacifica and K.C. Rani, Forcing vertex square free detour number of a graph, Ratio Mathematica 45 (2023), 286 – 295, DOI: 10.23755/rm.v45i0.1030.

J.M. Prabakar and S. Athisayanathan, Connected weak edge detour number of a graph, Mapana Journal of Sciences 15 (2016), 43 – 53, DOI: 10.12723/mjs.38.5.

S.S. Ramalingam, I.K. Asir and S. Athisayanathan, Vertex triangle free detour number of a graph, Mapana Journal of Sciences 15 (2016), 9 – 24, DOI: 10.12723/mjs.38.2.

A.P. Santhakumaran and S. Athisayanathan, On the connected detour number of a graph, Journal of Prime Research in Mathematics 5 (2009), 149 – 170, URL: http://www.sms.edu.pk/jprm/media/pdf/jprm/volume_05/06.pdf

A.P. Santhakumaran, P. Titus and S. Arumugam, The vertex detour number of a graph, AKCE International Journal of Graphs and Combinatorics 4 (2007), 99 – 112, DOI: 10.1080/09728600.2007.12088823.

P. Titus and K. Ganesamoorthy, Upper detour monophonic number of a graph, Electronic Notes in Discrete Mathematics 53 (2016), 331 – 342, DOI: 10.1016/j.endm.2016.05.028.

Downloads

Published

31-12-2023
CITATION

How to Cite

Rani, K. C., & Pacifica, G. P. (2023). On the Square Free Detour Number of Windmill Graphs. Communications in Mathematics and Applications, 14(5), 1759–1766. https://doi.org/10.26713/cma.v14i5.2194

Issue

Section

Research Article