Pendant Total Domination Polynomial of Some Families of Standard Graphs

Authors

DOI:

https://doi.org/10.26713/cma.v14i2.2193

Keywords:

Dominating Set (DS), Total Dominating Set (TDS), Pendant Total Domination (PTD), Pendant Total Dominating Set (PTDS), Pendant Total Domination Number (PTDN)

Abstract

In this article, our aim is to determine the pendant total domination polynomial of some families of standard graphs and obtain some properties of coefficients and nullity of the pendant total domination polynomial of a connected graph \(\mathcal{G}\). Consider \(\mathcal{G}\) as a simple connected graph and its vertex and edge sets are defined as \(\mathcal{V}_\calG\) and \(\mathcal{E}_\calG\), respectively. A set \(\mathcal{T} \subseteq \mathcal{V}_\calG\) is said to be a total dominating set of graph \(\mathcal{G}\) if all the vertices of the graph must attached with some vertex of \(\mathcal{T} \). A set \(\mathcal{T} \subseteq \mathcal{V}_\calG\) is said to be a PTDS if \(\mathcal{T}\) is a TDS and \(\langle \mathcal{T} \rangle\) contains at least a single pendant vertex.

Downloads

Download data is not yet available.

References

S. Alikhani, On the domination polynomial of some graph operations, International Scholarly Research Notices 2013 (2013), Article ID 146595, 3 pages, DOI: 10.1155/2013/146595.

S. Alikhani and Y. H. Peng, Introduction to Domination Polynomial of a Graph, Ars Combinatoria 114(2014), 257 – 266, URL: http://combinatoire.ca/ArsCombinatoria/ACgetit.php?vol=114&paper=26.

J. L. Arocha and B. Llano, Mean value for the matching and dominating polynomial, Discussiones Mathematicae Graph Theory 20(1) (2000), 57 – 69, DOI: 10.7151/dmgt.1106.

B. Chaluvaraju and V. Chaitra, Total domination polynomial of a graph, Journal of Informatics and Mathematical Sciences 6(2) (2014), 87 – 92, DOI: 10.26713/jims.v6i2.256.

E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total domination in graphs, Networks 10(3) (1980), 211 – 219, DOI: 10.1002/net.3230100304.

I. Gutman and B. Borovicanin, Nullity of graphs: An updated survey, Zbornik Radova 22 (2011), 137 – 154, URL: http://elib.mi.sanu.ac.rs/files/journals/zr/22/zbr14137.pdf.

S. R. Nayaka, Puttaswamy and S. Purushothama, Pendant domination in graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 112(1) (2020), 219 – 230.

S. R. Nayaka, Puttaswamy and S. Purushothama, Pendant domination polynomial of a graph, International Journal of Pure and Applied Mathematics 117(11) (2017), 193 – 199, URL: https://acadpubl.eu/jsi/2017-117-11-14/articles/11/23.pdf.

J. Rani and S. Mehra, Pendant total domination number of some generalized graphs, Advances and Applications in Discrete Mathematics 33 (2022), 19 – 44, DOI: 10.17654/0974165822036.

Downloads

Published

18-09-2023
CITATION

How to Cite

Rani, J., & Mehra, S. (2023). Pendant Total Domination Polynomial of Some Families of Standard Graphs. Communications in Mathematics and Applications, 14(2), 647–654. https://doi.org/10.26713/cma.v14i2.2193

Issue

Section

Research Article