Stability Results of the Additive-Quadratic Functional Equations in Random Normed Spaces by Using Direct and Fixed-Point Method

Authors

  • Asha Rani Department of Mathematics, Pandit Neki Ram Sharma Government College (Maharshi Dayanand University), Rohtak 124001, Haryana, India; Department of Mathematics, Baba Mastnath University, Asthal Bohar, Rohtak 124021, Haryana, India https://orcid.org/0009-0009-0373-4732
  • Sushma Devi Department of Mathematics, Kanya Mahavidyalaya Kharkhoda (Maharshi Dayanand University), Kharkhoda 131402, Haryana, India https://orcid.org/0000-0003-3722-860X
  • Manoj Kumar Antil Department of Mathematics, Baba Mastnath University, Asthal Bohar, Rohtak 124021, Haryana, India https://orcid.org/0000-0003-4455-8690

DOI:

https://doi.org/10.26713/cma.v14i2.2148

Keywords:

Hyers-Ulam stability, Additive functional equations, Quadratic functional equations, Random normed spaces, Fixed point method, Direct method

Abstract

In this paper, we prove the Hyers-Ulam stability of different additive-quadratic functional equations in Random Normed Space (RN-Space) by direct and fixed-point method.

Downloads

References

A. M. Alanazi, G. Muhiuddin, K. Tamilvanan, E. N. Alenze, A. Ebaid and K. Loganathan, Fuzzy stability results of finite variable additive functional equation: direct and fixed point methods, Mathematics 8(7) (2020), 1050, DOI: 10.3390/math8071050.

N. Alessa, K. Tamilvanan, G. Balasubramanian and K. Loganathan, Stability results of the functional equation deriving from quadratic function in random normed spaces, AIMS Mathematics 6(3) (2021), 2385 – 2397, DOI: 10.3934/math.2021145.

P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, Journal of Mathematical Analysis and Applications 184(3) (1994), 431 – 436, DOI: 10.1006/jmaa.1994.1211.

M. E. Gordji, H. Khodaei and Th. M. Rassias, Fixed Points and stability for quadratic mappings in β-normed left Banach modules on Banach algebras, Results in Mathematics 61 (2012), 393 – 400, DOI: 10.1007/s00025-011-0123-z.

D. H. Hyers, On the stability of the linear functional equation, Proceedings of the National Academy of Sciences 27(4)(1941), 222 – 224, DOI: 10.1073/pnas.27.4.222.

K.-W. Jun and Y.-H. Lee, On the Hyers-Ulam-Rassias stability of a pexiderized quadratic inequality, Mathematical Inequalities & Applications 4(1) (2001), 93 – 118, DOI: 10.7153/mia-04-08.

P. L. Kannappan, Quadratic functional equation and inner product spaces, Results in Mathematics 27 (1995), 368 – 372, DOI: 10.1007/BF03322841.

H. A. Kenary, C. Park, H. Rezaei and S. Y. Jang, Stability of a generalized quadratic functional equation in various spaces: a fixed point alternative approach, Advances in Difference Equations 2011 (2011), Article number: 62, DOI: 10.1186/1687-1847-2011-62.

D. Mihe¸t and R. Saadati, On the stability of the additive Cauchy functional equation in random normed spaces, Applied Mathematics Letters 24(12) (2011), 2005 – 2009, DOI: 10.1016/j.aml.2011.05.033.

C. Park, K. Tamilvanan, G. Balasubramanian, B. Noori and A. Najati, On a functional equation that has the quadratic-multiplicative property, Open Mathematics 18(1) (2020), 837 – 845, DOI: 10.1515/math-2020-0032.

M. Ramdoss, D. Pachaiyappan, C. Park and J. R. Lee, Stability of a generalized n-variable mixed-type functional equation in fuzzy modular spaces, Journal of Inequalities and Applications 2021 (2021), Article number: 61, DOI: 10.1186/s13660-021-02594-y.

J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Journal of Functional Analysis 46(1) (1982), 126 – 130, DOI: 10.1016/0022-1236(82)90048-9.

Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proceedings of the American Mathematical Society 72 (1978), 297 – 300, DOI: 10.1090/S0002-9939-1978-0507327-1.

Th. M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Universitatis Babe¸s-Bolyai 43(3) (1998), 89 – 124.

Th. M. Rassias and K. Shibata, Variational problem of some quadratic functionals in complex analysis, Journal of Mathematical Analysis and Applications 228(1) (1998), 234 – 253, DOI: 10.1006/jmaa.1998.6129.

K. Ravi, M. Arunkumar and J. M. Rassias, Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematics and Statistics 3(A08) (2008), 36 – 46.

B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Dover Publications, Inc., New York (1983).

A. N. Serstnev, On the notion of a random normed space, Doklady Akademii Nauk SSSR 149 (1963), 280 – 283 (in Russian).

K. Tamilvanan, R. T. Alqahtani and S. A. Mohiuddine, Stability results of mixed type quadratic-additive functional equation in β-Banach modules by using fixed-point technique, Mathematics 10(3) (2022), 493, DOI: 10.3390/math10030493.

K. Tamilvanan, J. R. Lee and C. Park, Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces, AIMS Mathematics 5(6) (2020), 5993 – 6005, DOI: 10.3934/math.2020383.

S. M. Ulam, Problems in Modern Mathematics, 2nd editions, John Wiley & Sons, New York (1964).

T. Xu, J. M. Rassias and W. Xu, A fixed point approach to the stability of a general mixed additive-cubic equation on Banach modules, Acta Mathematica Scientia 32(3) (2012), 866 – 892, DOI: 10.1016/S0252-9602(12)60067-8.

Downloads

Published

18-09-2023
CITATION

How to Cite

Rani, A., Devi, S., & Antil, M. K. (2023). Stability Results of the Additive-Quadratic Functional Equations in Random Normed Spaces by Using Direct and Fixed-Point Method. Communications in Mathematics and Applications, 14(2), 827–843. https://doi.org/10.26713/cma.v14i2.2148

Issue

Section

Research Article