Reflection of Plane Waves in a Transversely Isotropic Rotating Microstretch Elastic Half-Space

Authors

DOI:

https://doi.org/10.26713/cma.v14i2.2145

Keywords:

Plane waves, Rotation, Microstretch elastic half-space, Amplitude ratios

Abstract

. In this paper, the impact of rotation on the propagation of plane waves for various rotation parameter values has been studied. For this purpose, a model has been developed which is assumed to rotate with uniform angular velocity. A transversely isotropic solid medium with microstretch elastic properties has linear governing equations that are focused in the x-z plane. For the incident Coupled Longitudinal Displacement (CLD) wave, four reflected coupled plane waves exists in the same medium. A half-space surface with no stresses of a material is thought to exist where the CLD wave reflects. On the stress-free surface of the half-space, the appropriate potentials for the incident and reflected waves satisfy the necessary boundary conditions, and relationships in the amplitude ratios of reflected waves are obtained. Graphs of plane wave speeds and amplitude ratios versus propagation angle are shown for various values of the rotation parameter

Downloads

Download data is not yet available.

References

M. Ciarletta, On the bending of microstretch elastic plates, International Journal of Engineering Science 37 (1999), 1309 – 1318, DOI: 10.1016/S0020-7225(98)00123-2.

A. C. Eringen, Theory of micropolar fluids, Indiana University Mathematics Journal 16 (1967), 1 – 18, DOI: 10.1512/iumj.1967.16.16001.

A. C. Eringen, Theory of thermo-microstretch elastic solids, International Journal of Engineering Science 28 (1990), 1291 – 1301, DOI: 10.1016/0020-7225(90)90076-U.

D. Iesan and A. Pompei, On the equilibrium theory of microstretch elastic solids, International Journal of Engineering Science 33 (1995), 399 – 410, DOI: 10.1016/0020-7225(94)00067-T.

A. Kiris and E. Inan, On the identification of microstretch elastic moduli of materials by using vibration data of plates, International Journal of Engineering Science 46 (2008) 585 – 597, DOI: 10.1016/j.ijengsci.2008.01.001.

R. Kumar, R. Singh and T. K. Chadha, Plane strain problem in microstretch elastic solid, Sadhana 28 (2003), 975 – 990, DOI: 10.1007/BF02703808.

M. Marin, A domain of influence theorem for microstretch elastic materials, Nonlinear Analysis: Real World Applications 11 (2010), 3446 – 3452, DOI: 10.1016/j.nonrwa.2009.12.005.

J. L. Nowinski, On the surface waves in an elastic micropolar and microstretch medium with nonlocal cohesion, Acta Mechanica 96 (1993), 97 – 108, DOI: 10.1007/BF01340703.

S. Sharma, K. Sharma and R. R. Bhargava, Plane waves and fundamental solution in an electro-microstretch elastic solids, Afrika Matematika 25 (2014), 483 – 497, DOI: 10.1007/s13370-013-0161-7.

J. N. Sharma, S. Kumar and Y. D. Sharma, Propagation of Rayleigh surface waves in microstretch thermoelastic continua under inviscid fluid loadings, Journal of Thermal Stresses 31 (2007), 18 – 39, DOI: 10.1080/01495730701737845.

B. Singh and M. Goyal, Wave propagation in a transversely isotropic microstretch elastic solid, Mechanics of Advanced Materials and Modern Processes 3 (2017), Article number: 8, DOI: 10.1186/s40759-017-0023-3.

D. Singh, N. Rani and S. K. Tomar, Dilatational waves at a microstretch solid/fluid interface, Journal of Vibration and Control 23(20) (2017), 3448 – 3467, DOI: 10.1177/1077546316631158.

Downloads

Published

18-09-2023
CITATION

How to Cite

Gupta, P., & Sikka, J. S. (2023). Reflection of Plane Waves in a Transversely Isotropic Rotating Microstretch Elastic Half-Space. Communications in Mathematics and Applications, 14(2), 791–803. https://doi.org/10.26713/cma.v14i2.2145

Issue

Section

Research Article